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Maintaining Healthy Population Diversity Using
Adaptive Crossover, Mutation, and Selection

Brian Mc Ginley, John Maher, Colm O’Riordan, and Fearghal Morgan

Abstract—This paper presents ACROMUSE, a novel genetic
algorithm (GA) which adapts crossover, mutation, and selection
parameters. ACROMUSEs objective is to create and maintain
a diverse population of highly-fit (healthy) individuals, capable
of adapting quickly to fitness landscape change and well-suited
to the efficient optimization of multimodal fitness landscapes.
A new methodology is introduced for determining standard
population diversity (SPD) and an original measure of healthy
population diversity (HPD) is proposed. The SPD measure is
employed to adapt crossover and mutation, while selection
pressure is controlled by adapting tournament size according
to HPD. In addition to selection pressure control, ACROMUSE
tournament selection selects individuals according to healthy
diversity contribution rather than fitness. This proposed selection
mechanism simultaneously promotes diversity and fitness within
the population. The performance of ACROMUSE is evaluated
using various multimodal benchmark functions. Statistically
significant results are presented comparing ACROMUSEs fitness
and diversity performance to that of several other GAs. By main-
taining a diverse population of healthy individuals, ACROMUSE
responds to fitness landscape change by restoring better fitness
scores faster than other GAs. Analysis of the adaptive operators
illustrates that the key benefit of ACROMUSE is the synergy of
the operators working together to achieve an effective balance
between exploration and exploitation.

Index Terms—Genetic algorithm parameter adaptation,
healthy population diversity.

I. Introduction

P REMATURE population convergence [1] about a local
optimum is a common problem for traditional genetic

algorithms (GAs) [2]. It is a result of individuals hastily con-
gregating within a small region of the search space. Common
reasons for this convergence include the following.

1) Incorrect application of selection pressure: Whereby a
“super-performer” in the population dominates the selec-
tion procedure [3], eliminating much of the population’s
diversity.
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2) Too low a mutation rate: Diversity lost through selection
and crossover is not recovered via mutation.

3) Loss of crossover efficacy: As a population becomes
more converged, recombination of similar individuals
creates similar offspring (inbreeding).

Eiben et al. [4] demonstrate that GA parameter choice
strongly influences GA performance and that optimal param-
eter settings vary during the evolutionary process.

This paper presents ACROMUSE, a novel GA which adapts
crossover, mutation, and selection parameters. ACROMUSEs
objective is to create and maintain a diverse population of
highly-fit (healthy) individuals, capable of adapting quickly to
fitness landscape change and well-suited to the efficient opti-
mization of multimodal fitness landscapes (i.e., those typically
present in real-world problems).

ACROMUSE employs two measures of population diversity
to adapt crossover, mutation, and selection parameters. The
first measure: Standard population diversity (SPD) describes a
population’s solution space diversity. SPD is similar to other
diversity measures described in the literature [5]. The second
measure (proposed in this paper): Healthy population diver-
sity (HPD) describes a population’s solution space diversity
from a fitness perspective, i.e., a measure of the diversity of
healthy individuals. A healthy population refers to a high-
fitness population. However, a healthy population may be
converged from a solution space perspective. SPD refers purely
to solution space diversity with no regard to the health/fitness
of individuals. ACROMUSEs objective is to create a diversity
of health in the population [i.e., a (solution space) diversity of
high-fitness individuals]. This diversity of health is quantified
by the HPD measure.

Other SPD measures reported in the literature [5]–[7] de-
scribe the genetic diversity of individuals in a population,
without considering the fitness of each solution. Random
initialization and disruptive mutation of individuals can easily
generate a highly-diverse, randomly scattered population (of
low-fitness individuals). This is because highly mutated and
randomly initialized individuals are usually unfit. The pro-
posed HPD measure differs in that it quantifies the diversity
of highly-fit (healthy) individuals. By employing this HPD
measure, ACROMUSE targets healthy diversity maintenance
rather than SPD maintenance.

ACROMUSE employs the SPD measure to control mutation
and crossover rates, while HPD is used to regulate selection
pressure. Crossover employs the SPD measure to divide the
population into an exploration section and an exploitation
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section. The relative size of each section is controlled by
the SPD measure. Mutation is employed in both sections.
Mutation is applied adaptively with higher probability in the
exploration section to explore potentially unvisited areas of
the search space. Mutation is also employed as a local-search
mechanism (with low probability) in the exploitation section
of the population.

Selection pressure (tournament size) is adapted according to
the proposed HPD measure. Tournament size is reduced when
HPD is low (converged population) permitting lower-fitness
outliers to reproduce, thereby protecting innovation. When
HPD is high, tournament size is increased to promote “survival
of the fittest.” ACROMUSE tournament selection chooses the
individual with the largest healthy diversity contribution as the
tournament winner. This differs from traditional tournament
selection [8] which selects the individual with the best fitness
score. Healthy diversity contribution is calculated as a function
of both an individual’s diversity contribution and its fitness.
This mechanism simultaneously promotes both diversity and
fitness.

Maintaining a diverse population is very important for
GA search. Not only does high-genetic diversity increase the
population’s search coverage but it also endows the popula-
tion with a degree of robustness when facing environmental
(fitness landscape) change. A GA that demonstrates good
fitness performance may be brittle in the face of fitness
landscape variation, if it is not equipped to maintain or
introduce diversity. Thus, for certain applications (e.g., real-
world robotics controllers), it may be argued that diversity
in a population is as important as high fitness. Most GA
experiments prioritize solution quality (fitness) or algorithm
running time/speed [9], [10], neglecting the valuable diversity
component of the population. In this paper, the HPD measure
is proposed as an additional means of assessing a GAs
performance.

ACROMUSE has been evaluated on a group of multi-
modal function optimization problems [11], [12] and com-
pared to several well-established GAs [2], [11], [13]–[15].
Statistically significant results demonstrate that for the mul-
timodal functions employed, ACROMUSE eclipses other al-
gorithms both in fitness and diversity performance. In ad-
dition, ACROMUSE responds to fitness landscape change
by restoring higher fitness scores, faster than other GAs
investigated.

A detailed critique, from a fitness and diversity perspective,
is presented for each GA analyzed in this paper. The SPD
and HPD analysis performed in the paper, coupled with best
and average population fitness results, provides novel insights
into the workings of these algorithms. Analysis of the adaptive
operators illustrates that the key benefit of ACROMUSE is the
synergy of the operators working together in offering the best
fitness and diversity performance.

The remainder of this paper is structured as follows. Sec-
tion II reviews related work in the field of GA parameter
control and proposes the ACROMUSE adaptive operators.
Section III details the methodology for calculating SPD and
introduces HPD as a novel measure of a population’s diversity
of health. Section IV describes how SPD and HPD measures

are employed to adapt ACROMUSE’s crossover, mutation
and selection operators. Section V introduces several well-
established GA’s whose performances are compared to that of
ACROMUSE. Section VI introduces the multimodal function
optimization benchmarks used to evaluate GA performance.
Section VII presents and compares results from the application
of ACROMUSE and reference GAs to static multimodal
functions. Section VIII presents and discusses the results of
GA behavior following fitness landscape change. Section IX
analyses ACROMUSE’s adaptive operators. Section X con-
cludes this paper and lists its principal contributions.

II. Related Work

Eiben et al. [4] present a thorough review of GA parameter
control and demonstrate that optimal GA parameter values
vary during the course of evolution. This can be explained
through a GA’s twin goals of exploitation and exploration. A
delicate balance must be struck between these two goals to
prevent either premature convergence (too much exploitation)
or blind random search (too much exploration). This section
reviews related work in the field of GA parameter control and
proposes ACROMUSE’s methods for adapting the mutation,
crossover, and selection operators.

A. Mutation Parameter Control

Control of mutation rates is a widely researched mechanism
of parameter control in evolutionary algorithm theory, with its
roots dating back to Rechenberg’s adaptive “1/5 success rule”
of evolutionary strategies [16]. Some approaches to adaptive
mutation control [17]–[20] employ parent fitness in determin-
ing mutation probability. If selected, highly fit individuals
undergo low levels of mutation (minimal disruption), while
low-fitness individuals are subjected to large rates of disruptive
mutation. A measure of population diversity is employed
by [5] and [21] in adapting mutation probabilities. Mutation
according to diversity is used to introduce novel diversity to a
converged population. In a similar vein, Zhang et al. [22] adapt
crossover and mutation according to parameters extracted from
a K-means clustering algorithm. This clustering algorithm is
employed as a means of monitoring diversity and the optimiza-
tion state of the population. In [23], Yuen et al. propose an
archiving method that prevents revisits by remembering every
point visited in the fitness landscape. This approach has merit
for applications with time-consuming fitness evaluations. The
binary space partitioning archival method employed consti-
tutes a parameter-less adaptive mutation operator that always
locates a previously unvisited neighbor in the search space.
Srinivas and Patnaik [24] calculate the net applied mutation
rate as an average of: 1) parent-fitness determined mutation,
and 2) a mutation rate, determined from a population diversity
measure.

ACROMUSE’s adaptive mutation, similar to [24], is con-
trolled by an average rate determined from two mechanisms:
1) SPD controlled mutation rate, and 2) parent fitness con-
trolled mutation rate. A drawback with Srinivas and Patnaik’s
method [24] is that population convergence is detected accord-
ing to a fitness-based measure. The degree of diversity loss is
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calculated as fmax − fave, where fmax is the maximum fitness
value in the population, while fave is the average population
fitness. Srinivas and Patnaik hypothesize that the closer fave is
to fmax the more converged the population is. In multimodal
fitness landscapes, however, many different genotypes can
share the same fitness score, so although an average fitness
value may be identical to the best fitness value, the population
may be scattered widely. ACROMUSE differs from [24] as
it employs diversity measures calculated from the genetic
diversity rather than the fitness diversity within a population.

B. Crossover Parameter Control

Hagras et al. [21], Srinivas and Patnaik [24], and Zhu et al.
[5] employ a measure of diversity in adapting the crossover
rate. Liu et al. [25] employ a rank-based approach for varying
crossover probabilities where GA parameter settings for an
individual depend on the performance of its parents; highly-
fit members are protected while low-fitness individuals are
subjected to high-crossover probabilities.

ACROMUSE employs adaptive crossover which varies
crossover probability (Pc) according to SPD. Pc is reduced
on population convergence (low SPD) and increased on high
SPD. Individuals that are not subject to crossover have a higher
rate of mutation applied instead. This effectively divides the
ACROMUSE population into an exploitation section (using
crossover and a low rate of mutation for local search), and an
exploration section (where mutation is employed adaptively
with higher probability to scout potentially unvisited areas
of the search space). ACROMUSE differs from previous GA
implementations in that crossover is employed to partition the
population into separate sections (one dedicated to exploita-
tion, the other to exploration).

C. Selection Parameter Control

Disruptive selection [25], [26] is a classic example of
an adaptive mechanism that counters premature convergence
through a nonmonotonic fitness function, which favors the
strongest and weakest individuals in a population. Affenzeller
and Wagner [27] present an adaptive selection mechanism,
where selection pressure is varied by adjusting the proportion
of individuals within the offspring population which must
outperform their parents.

Self-adaptive selection [28], [29] incorporates individual
voting within the tournament selection process. A hybrid self-
adaptive tournament selection mechanism is also introduced
which outperforms the purely self-adaptive algorithm. Vajda
et al. [30] present a thorough overview of known parameter
control methods for GA parent selection operators, noting that
“on-the-fly control of selection operators has received little
attention” and that “on-the-fly adjustment of the parameter(s)
regulating selection is superior to using a constant value.”

Other reported mechanisms which do not specifically adapt
the selection operator but yet control population diversity
levels include: Fitness sharing (FS) [15], [31], crowding
[32], restricted mating [33], diversity maintaining replacement
strategies [34], population re-initialization strategies [35], [14],
and random offspring generation [36]. In the field of multiob-

Fig. 1. Typical fitness landscape illustrating a converged population, local
optima, global optimum, and the position of the average individual.

jective optimization, [37] provides a detailed analysis of dif-
ferent selection strategies for the promotion and maintenance
of a wide diversity of pareto-optimal solutions.

While many of these techniques seek to promote diversity,
the proposed ACROMUSE algorithm employs an adaptive
selection operator which encourages promotion of HPD. The
ACROMUSE adaptive tournament selection operator differs
from traditional static tournament selection as ACROMUSE
adapts tournament size according to HPD. In addition, ACRO-
MUSE determines the tournament selection winner as the
individual with the largest healthy diversity contribution rather
than the traditional method of selecting according to best fit-
ness scores. This adaptive selection mechanism simultaneously
promotes both diversity and fitness. To the authors’ knowledge,
no other adaptive selection operator exists that adapts selection
pressure to allow survival of outlying individuals on popula-
tion convergence, while explicitly rewarding both fitness and
diversity contribution in the selection process.

III. SPD and HPD

This section defines the proposed methods for calculating
genotypic SPD and HPD. HPD is presented as a novel
measure of diversity that quantifies the diversity of health in
a population.

A. Standard Population Diversity (SPD)

SPD [5], [6], [38], and [39] describes the level of variation
in a population. Genetic diversity is a very important compo-
nent of evolutionary exploration since a GA can only search
the space offered to it by the genes present in the population.
Fig. 1 illustrates a typical fitness landscape containing a
converged population, a number of local optima and the global
optimum. The location of the hypothetical average individual
is also illustrated.

With traditional GAs (TGAs), population convergence, as
illustrated in Fig. 1, can occur very quickly [3]. This is
caused by individuals congregating at a relatively fit area of
the fitness landscape through a process of repeated selection
of the same individuals, crossover of similar (converged)
individuals and low-mutation rates. This locality of converged
solutions may only be at a local optimum, potentially distant
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Fig. 2. Fitness landscape illustrating a diverged (highly mutated) population.
SPDi refers to individual i’s contribution to SPD.

from higher peaks or the global optimum. Since the pop-
ulation is converged, little opportunity is afforded to allow
individuals explore other solution possibilities. Therefore, the
population is trapped within a narrow region of the search
space.

Fig. 2 illustrates a fitness landscape where a high-mutation
rate has scattered individuals throughout the search space.
ACROMUSE implements such an adaptive mutation operator,
which scatters individuals to introduce novel genetic diversity.
This innovation promotes a broader exploration of the global
solution space. Fig. 2 also illustrates that high-mutation rates
are generally destructive from a fitness perspective. Note that
a partially converged sub-population also exists in the region
of a local optimum.

B. Calculating SPD

SPD is calculated by finding the position of the average in-
dividual within the population (1) and summing the gene-wise
Euclidean distances from this average point to the location of
each individual (3).

ACROMUSE’s population consists of P individuals (G1 to
GP ) where each individual consists of N genes. Gi,nrefers
to the nth gene of individual i; Gi = (Gi,1, Gi,2, . . . , Gi,N ).
The average individual in the population is referred to as
Gave and is computed as the gene-wise average over all P
individuals. Gave

n refers to the average of all nth genes in
the population. Note that for certain encodings (e.g., binary
valued genomes), an averaging may not produce a realizable
individual. This does not affect ACROMUSE, however, as
the average individual is purely a hypothetical individual,
exclusively employed for diversity calculation

Gave
n =

1

P

P∑
i=1

Gi,n. (1)

SPDi refers to individual i’s contribution to SPD. It
is calculated as the Euclidean distance between individual
i and Gave

SPDi =

√√√√ N∑
n=1

(Gi,n − Gave
n )2. (2)

A simple summation of SPDi could be employed to describe
SPD. This approach is not used, however, because the sum-
mation cannot be normalized according to the mean (Gave).
If SPD is not normalized, SPD measures vary immensely for
different problems and populations. To compute a normalized
measure of SPD, a gene-wise standard deviation (measure
of spread from the average individual) of the population is
performed (3). This measure is calculated as the gene-wise
standard deviation (σ(Gave

n )) over all P individuals

σ(Gave
n ) =

√√√√ 1

P

P∑
i=1

(Gi,n − Gave
n )2. (3)

Because of the gene-wise approach employed in (3), the
standard deviation can be expressed relative to the mean
(Gave) as a coefficient of variation (4). Cv(Gave) denotes
the coefficient of variation of the average individual. This
coefficient of variation (4) is used as the measure of SPD,
which is employed to determine the adaptive mutation and
crossover rates

SPD = Cv(Gave) =
1

N

N∑
j=1

(
σ(Gave

j )

Gave
j

)
. (4)

C. Healthy Population Diversity (HPD)

While the SPD measure of diversity outlined in Section III-
B provides a good indication of population spread across
the solution space, it does not account for the position of
individuals in the fitness space. Fig. 2 illustrates that, although
a population may appear diverged, most of the successful
highly-fit individuals in the population lie within a converged
localized area. At the same time, many of the scattered
individuals that contribute to diversity are found in low-fitness
areas of the search landscape. A central goal of this research
is not only to maintain a good spread of individuals but
to maintain a good spread of healthy individuals. Healthy
individuals are population members that achieve good fitness
scores.

D. Calculating HPD

To deal with the challenge of describing the diversity of
population health, a fitness-weighted measure of population
diversity (HPD) is introduced. HPD differs from SPD in that
each individual’s contribution to diversity in the solution space
is influenced according to its fitness. A problem’s fitness space
and solution space are inextricably linked. A fitness landscape
is a mapping over a solution space whereby every point has a
fitness associated with it. SPD exclusively considers diversity
in the solution space. HPD, in contrast, merges both fitness
and solution spaces by weighting each individual’s distance
contribution in the solution space according to its score in the
fitness space. Therefore, HPD describes fitness-weighted (fit-
ness landscape) diversity while SPD solely describes solution
space diversity.

HPD is calculated by finding the position of the weighted
average individual within the population (6) and summing
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Fig. 3. Fitness landscape illustrating the position of the weighted average
individual and the mechanism for calculating HPD. HPDi refers to individual
i’s contribution to healthy diversity.

Fig. 4. Fitness landscape illustrating a population with high HPD.

the gene-wise fitness-weighted distances from this weighted
average point to the location of each individual (8).

To calculate the position of the weighted average individual
(GW.ave), each population member’s influence on the weighted
average individual position is adjusted according to its fitness.
An individual’s wi is defined as the individual’s fitness ex-
pressed as a proportion of total fitness (5).

Fig. 3 illustrates how fitness-weighting each individual’s
influence on the weighted average has shifted the position of
the weighted average individual closer to the converged high-
fitness area. Although the population illustrated in Fig. 3 has
a large measure of SPD, it has a small HPD measure. This
is because all high-fitness individuals are located in a small
region of the fitness landscape.

In contrast, Fig. 4 illustrates a population with a large
measure of HPD. High-fitness (healthy) individuals attract
the weighted average individual away from the cluster of
converged individuals (illustrated in Fig. 3). Healthy (high-
fitness) individuals are now far from the fitness-weighted
average individual, resulting in a large measure of HPD

wi =
fi∑P
k=1 fk

. (5)

Equation (6) describes the method for calculating the
weighted average individual (GW.ave). GW.ave is computed as

the fitness-weighted gene-wise average across all P individuals

GW.aven =
P∑
i=1

wiGi,n. (6)

HPDi refers to individual i’s contribution to healthy diver-
sity. Fig. 3 illustrates that HPDi is small. This is because
individual i (although located far from the weighted average
individual) is of low-fitness. Similarly, HPDj (in Fig. 3) is
small. This is because, although j is of high-fitness, j is located
in close proximity to the weighted average individual.

To calculate HPDi, individual i’s Euclidean distance to the
weighted average individual is weighted according to its fitness
(7). This approach means that an individual which is far from
the weighted average will only have a large HPDi measure if
the individual is highly-fit

HPDi = wi

√√√√ N∑
i=1

(Gi,n − GW.ave
n )2. (7)

For computation of a normalized HPD, each individual’s
weighted gene-wise distance to the average individual is
summed over the entire population to calculate the popula-
tion’s gene-wise fitness-weighted standard deviation [defined
as σ(GW.aven)]

σ(GW.aven) =

√√√√ P∑
i=1

wi(Gi,n − GW.aven)2. (8)

The weighted coefficient of variation (Cv(GW.ave)) is calcu-
lated to normalize the value of HPD (by relating the weighted
standard deviation to the mean)

HPD = CV (GW.ave) =
1

N

N∑
j=1

(
σ(GW.ave

j )

Gave
j

)
. (9)

This fitness-adjusted measure of diversity (fitness-weighted
coefficient of variation) is used as the measure of HPD. HPD
is employed to adapt the tournament selection operator.

IV. ACROMUSE Adaptive Operator

Implementation

This section details the implementation of the ACROMUSE
adaptive genetic operators and describes how SPD and HPD
measures are employed to balance evolution’s driving force
of “survival of the fittest,” with a random exploration of
the solution space. ACROMUSE adaptive crossover, adaptive
mutation and adaptive tournament selection are introduced.
Fig. 5 illustrates the ACROMUSE GA process for producing
an offspring population.

Regarding parameter sensitivity, the performance of a TGA
is highly dependent on the choice of fixed parameters. In con-
trast, adaptive GAs vary parameters according to population
statistics. For example, with a TGA, an incorrectly chosen
selection pressure or mutation rate may result in premature
convergence. However, an adaptive GA (such as ACROMUSE)
avoids premature convergence by modifying crossover, mu-
tation, and selection according to the population’s diversity
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Fig. 5. ACROMUSE GA process for producing an offspring population.
The adaptive crossover operator determines the relative sizes of the exploita-
tion/exploration divisions. Individuals that are not chosen for crossover are
instead used for exploration (via adaptive random mutation applied with
higher probability). All selected individuals are chosen by the adaptive
tournament selection operator (except the single elite individual), therefore,
ensuring a good diversity of healthy individuals. During tournament selection,
the individual with the largest fitness and diversity (HPDi) contribution is
selected.

status. As an adaptive GA’s parameters specify upper and
lower ranges, they are far less sensitive than a static/fixed
value, since the actual parameter settings can assume any value
within this range.

A. ACROMUSE Adaptive Crossover

Crossover generally converges a population since no ad-
ditional diversity is added through its implementation; only
recombination of existing genetic material is facilitated. Over
time, as individuals become more similar through “survival
of the fittest,” crossover of similar selected individuals es-
sentially becomes a local search (in-breeding). ACROMUSE
adaptively mutates (with higher probability) individuals that
do not undergo crossover. This technique essentially divides
the population into following two sections (Fig. 5):

1) exploitation section (crossover and low mutation);
2) exploration section (high-probability adaptive mutation).

The size of each division is determined by the SPD mea-
sure. A highly converged (low SPD) population will result
in reduced crossover probability to increase the size of the
exploration division in the population. A highly diverged pop-
ulation (high SPD) employs more crossover and local search
mutation (Pm = 0.01) to encourage exploitation. Equation
(10) defines the proposed mechanism for calculating crossover
probability (Pc). Uniform crossover at gene level is employed
by ACROMUSE

Pc =

[(
SPD

SPDmax
∗ (K2 − K1)

)
+ K1

]
. (10)

In this paper, Pc varies from 0.4 (K1) to 0.8 (K2), based on
population diversity (0 < SPD ≤ SPDmax). As Pc controls the
relative sizes of the exploration and exploitation sections, K1

is set to 0.4. This ensures that a minimum (on total population
convergence) of 40% of individuals are protected from large-
scale disruption in the exploitation division. K2 is set to 0.8 so
that on maximal population diversity, 20% of individuals are
dedicated to continued exploration while the majority (80%) of
the population works to further exploit the good genes already
present. SPDmax is set to 0.4. This is because, in practice, the
ratio between the population’s standard deviation and the mean
(4) does not exceed 0.4.

B. ACROMUSE Adaptive Mutation

This section describes the adaptive mutation implemented
in the exploration division of the population (Fig. 5). The
adaptive mutation rate (Pm) employed is an average of two
mechanisms: SPD controlled mutation (PDiversity

m ) and parent
fitness controlled mutation (PFitness

m ). Single parent selection
(no crossover) (Fig. 5) and random re-initialization mutation
(at gene level) are employed.

Equation (11) defines the proposed mutation rate determined
from population diversity (PDiversity

m ). A highly converged pop-
ulation is mutated more to introduce diversity. Grefenstette
et al. [40] state that employing a Pm above 0.1 essentially
corresponds to random search while the CHC random-restart
strategy employs a Pm of 0.35 [14]. For the ACROMUSE
algorithm, K is set to 0.5 and corresponds to the upper bound
of Pm. The value of Pm is equal to K when the population is
maximally diverged (SPD = SPDmax) and when the selected
parent is the worst individual in the population. A Pm equal to
0.5 amounts to almost complete disruption of the individual.
The selected range of Pm [0–0.5] provides a good resolution
of possible mutation rates

PDiversity
m =

SPDmax − SPD

SPDmax
∗ K. (11)

The rationale for parent fitness-based mutation (PFitness
m ) is

to preserve a healthy individual’s genetic material, while seri-
ously disrupting individuals that are in low-lying fitness areas,
to encourage further exploration. Equation (12) defines the
proposed method for calculating PFitness

m ; where f corresponds
to parent fitness, f max and f min correspond to the best and
worst fitness individuals in the population respectively. The
selected value of K is 0.5

PFitness
m = K∗

(
fmax − f

fmax − fmin

)
. (12)

Equation (13) defines the proposed method for calculating
the net adaptive mutation rate (Pm) applied to each individual
in the exploration section

Pm =
PFitness

m + PDiversity
m

2
. (13)

C. ACROMUSE Adaptive Selection

This section discusses the limitations of adaptive crossover
and mutation. The rationale for including a novel adaptive
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selection mechanism is presented and the proposed adaptive
selection operator is described.

1) Adaptive Crossover and Mutation—Limitations: Obser-
vations on a group of randomly generated or highly mutated
individuals indicate that most mutations have a negative impact
on fitness. This is because, for most problems, high-fitness
areas are sparse in the fitness landscape.

In our initial adaptive crossover and mutation experiments,
a nonadaptive selection operator continued to choose from the
same converged cluster of highly fit individuals (exploitation
segment of the population), neglecting the less-fit individuals
scattered throughout the fitness landscape by the exploration
segment. This resembles the premature convergence problems
caused by super-performers in TGAs. As a consequence of
strong selection pressure, the same group of (exploitation)
individuals continued to reappear in successive populations,
albeit undergoing large (mainly destructive) rates of random
mutation in the exploration section. No protection or op-
portunity is afforded to outlying exploration individuals to
reproduce and perform a further search of their locality.

2) Rationale for Adaptive Selection: From a selection
perspective, a diverged parent population does not automat-
ically result in diverged offspring. A novel adaptive selection
mechanism is proposed here to overcome this limitation. The
ability to tune selection pressure is a product of employing
tournament selection. A tournament size equal to the popu-
lation size equates to elitism, while a tournament size of 1
equates to random selection. Therefore, decreasing tournament
size in a converged population provides outlying individuals
with a chance of selection. Similarly, if a population is
diverged, tournament size is increased to promote “survival
of the fittest.”

However, the traditional measure of diversity (SPD) is not
suitable for controlling selection pressure. Fig. 2 illustrates that
a population may appear highly diverged in the solution space.
However, as illustrated, many of the high-fitness individuals
lie close to a localized optimum, with diverged or mutated
individuals scattered across the low-fitness plains. This means
that the population possesses high SPD but low HPD. In
this instance, by adapting selection according to the SPD
measure, selection pressure will increase (as a consequence of
high-solution space diversity) and selection will continuously
return to the converged high-fitness section of the population.
Therefore, although a population may appear diverged, it is
in fact, still highly converged from the perspective of the
selection operator.

3) Proposed Adaptive Selection Operator: In order to
obtain a good spread of healthy individuals, the proposed
adaptive selection operator employs the novel HPD measure
to control tournament size. When the population is con-
verged from a fitness-based perspective, low-fitness outliers
are offered a greater chance of selection, thereby protecting
innovation. When diverged, tournament size is increased, thus
promoting “survival of the fittest.”

Equation (14) defines the proposed adaptive selection im-
plementation. Tsize refers to the tournament size used by the
operator. T sizemax is set to populationSize/6 and corresponds
to the maximum selection pressure that can be applied to

the population. Empirical results indicate that any tournament
size greater than populationSize/6 leads to almost instant
population diversity loss. This value of T sizemax gives good
resolution to possible selection pressures, ranging from ran-
dom selection (T size = 1) to very strong selection pressure
(T size = populationSize/6). HPDmax refers to the maximum
HPD attainable. HPDmax is set to 0.3. This is because,
in practice, the ratio of the population’s weighted standard
deviation to the weighted mean does not exceed 0.3

Tsize =

⌈
HPD

HPDmax
∗ Tsizemax

⌉
. (14)

4) Traditional Tournament Selection: Tournament selec-
tion is a well-established GA operator with applications found
widely throughout the literature [8]. Tournament selection
involves selecting a number (Tsize) of individuals randomly
from the population, with the best individual from this group
being selected as a parent. The definition of “best individual,”
however, needs to be examined. To the authors’ knowledge,
all existing tournament selection implementations select the
individual with the highest fitness score as the best individual
(winner) of the tournament. In this paper, a new approach is
proposed: Selection according to healthy diversity contribu-
tion.

5) ACROMUSE Tournament Selection—Selection Accord-
ing to Healthy Diversity Contribution (HPDi): Rather than
the traditional method of identifying a tournament’s winner as
the individual with the best fitness, this paper proposes that
to maintain healthy diversity, the individual with the largest
healthy diversity contribution is selected. Selecting according
to an individual’s standard diversity contribution (SPDi) would
not be appropriate, as GA search would tend toward random
selection, negating the very function of the selection operator
(“survival of the fittest”). Instead, the HPDi (fitness-weighted
diversity contribution) (7) measure is employed as a means
of selecting the best individual. This ensures that selection
recognizes both diversity contribution and fitness in choosing
the best individuals for reproduction. To the authors’ knowl-
edge, no other adaptive selection operator exists that adapts
selection pressure to allow survival of outlying individuals
on population convergence, while explicitly rewarding both
fitness and diversity contribution in the selection process.

In addition to adaptive tournament selection, ACROMUSE
employs elitist selection once (T size = population size) with-
out crossover and mutation to preserve the best individual
between generations (Fig. 5).

V. GA Review

This section describes several well-established reference
GAs whose behaviors are compared to that of ACROMUSE.
The GAs investigated include; a TGA [2], a GA with
Boltzmann selection [13], the CHC GA [14], deterministic
crowding (DC) [11], and FS [15]. Table I lists the parameters
employed for each GA. A population size of 40 is chosen
for all GA experiments. Random re-initialization mutation,
uniform crossover, and tournament selection (where appro-
priate) are employed in order to consistently compare the
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TABLE I

Benchmark GA Parameters

ACROMUSE ACROMUSE Without Traditional Fitness Deterministic CHC Boltzmann
HPDi Selection GA Sharing Crowding Roulette

Selection
Mutation (Pm) 0–0.5 (according

to SPD)
0–0.5 (according to SPD) 0.01 [40,

41]
0.01 0.01 0 (0.35 for

soft-
restart)

0.01

Crossover
(Pc)

0.4–0.8 (according to
SPD)

0.4–0.8 (according to SPD) 0.9 [40] 0.9 0.9 1 (if
individuals
are
sufficiently
different)

0.9

Selection Tsize ranges from 1−
popSize/6 according
to HPD. Selection ac-
cording to fitness and
diversity

Tsize ranges from 1 −popSize/6
according to HPD. Selection ac-
cording to fitness

Tsize = 2
[42]

Tsize = 2
[43]

Cross-
generational
truncation

Random
parent and
cross-
generational
survivor

Boltzmann
initial
temp = 4,
final temp
= 0.5 [13]

Pop-Size (P) 40

various diversity maintenance schemes. The maximum number
of generations allowed for evolution corresponds to the upper
x-limit illustrated on each of the graphs in Section VI.

A. Traditional Genetic Algorithm (TGA)

The TGA does not employ adaptive operators. The TGA’s
parameters are listed in Table I. The mutation and crossover
parameters chosen match the original parameters chosen by De
Jong in his seminal work [12]. De Jong’s choice of parameters
was justified by Grefenstette et al. [40] when a meta-GA was
employed to evolve these parameters. Following a detailed
study of GA control parameters, Schaffer et al. [41] found
that Pm = 0.05–0.01 and Pc = 0.75–0.95 perform best for
binary coded genomes.

Many papers [44]–[47] have adopted the above parameters
following the research of [12], [40], and [41]. Although these
parameters are optimal in many cases, this paper reveals (in
Section VII) the low-diversity measures resulting from their
application. These low SPD and HPD measures present a
significant risk of premature population convergence, demon-
strating that for highly-multimodal landscapes, large scale
exploration mutation is required. Results presented in this
paper focus on stressing the consequences of employing a
widely-used mutation rate which is set too low, rather than
performing a-priori parameter tuning for best performance.

B. Fitness Sharing (FS)

FS as proposed by Goldberg and Richardson [15] im-
plements a clever mechanism analogous to nature for re-
stricting the number of individuals occupying a niche in the
fitness landscape. Individuals within a certain “share-radius”
of each other have their fitness penalized according to a
sharing function. This limits the number of individuals that
can successfully occupy a niche and, therefore, encourages
exploration of other potential high-fitness areas.

A consideration of applying FS concerns choosing an ap-
propriate share-radius, since this value is very specific to the
environment. A constant share radius assumes that niches are
spread uniformly throughout the landscape. This issue has
been addressed in recent work relating to FS [31]. FS also

suffers from the limitation that an incorrectly sized population
may not provide sufficient coverage for all niches, especially
if niches are of unequal fitness.

C. Deterministic Crowding (DC)

DC, proposed by Mahfoud [11], is a novel variation of an
earlier crowding method proposed by De Jong [12]. DC is
an elegant, elitist algorithm which insists that an offspring
must be better than its most genotypically-similar parent in
order to progress to the next generation. This process means
that offspring, if fitter, will replace adults most similar to
themselves, therefore, largely retaining current diversity.

A limitation of DC is that individuals may migrate and
converge to a single dominant peak, although much more
slowly than with a TGA. Another limitation of DC is that
it can only maintain diversity of the pre-existing mixture.
There is no mechanism for introducing new diversity if the
population becomes converged, or in the event of a fitness
landscape change.

D. CHC GA

The CHC GA proposed by Eshelman [14], counters prema-
ture convergence by employing random parent selection and
an incest prevention mechanism. Individuals are randomly se-
lected for crossover, therefore, giving every individual an equal
chance of reproduction. However, crossover is only allowed if
individuals are sufficiently different genotypically (according
to a hamming distance threshold). If no crossover is possible
at the current threshold, the threshold is decremented and
crossover is re-attempted. Once the threshold reaches zero, the
population is randomly re-initialized (soft-restart) by replacing
the population with copies of the best individual and then
mutating the population with a large mutation rate (typically
Pm = 0.35). Selection pressure is added by employing cross-
generational truncation selection, where the entire population
is replaced by the best individuals from the union of parents
and their offspring. No mutation is employed by the CHC
algorithm other than during soft-restart.

The CHC algorithm is the only chosen benchmark algorithm
that includes a mechanism for large-scale diversity introduc-
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tion when the population becomes converged. A negative
aspect is that the soft-restart introduces random diversity
(around the best individual), rather than maintaining healthy
diversity throughout the fitness landscape.

E. Boltzmann Roulette Selection (BRS) GA

The BRS mechanism [13] begins search with a low-
selection pressure and increases the pressure steadily accord-
ing to a predefined schedule. This approach affords greater
exploration in the early stages of search, with increased
exploitation later (as promising optima emerge). This method-
ology contrasts with ACROMUSE, where a randomly diverged
population at initialization generally lends itself to stronger
selection pressure, until a stable SPD/HPD balance is reached.
ACROMUSE selection pressure is then reduced to maintain
healthy diversity and to perform a continued search of the
fitness landscape. BRS performs very well in static fitness
landscapes, though it performs poorly when long-term di-
versity maintenance and continued exploration over time are
required.

F. ACROMUSE Without HPDi Selection (AWHS)

For comparative purposes, a variant of ACROMUSE termed
AWHS has been implemented. AWHS is identical to ACRO-
MUSE except that, like traditional tournament selection,
AWHS tournament winners are determined by fitness while
ACROMUSE tournament winners are determined by an in-
dividual’s contribution to healthy diversity (HPDi). It is im-
portant to note that both ACROMUSE and AWHS employ
identical crossover and mutation operators. Both also employ
identical means for calculating tournament size. The only
difference is in the tournament selection process:

1) AWHS: Best fitness individual wins;
2) ACROMUSE: Best diversity and fitness contribution

wins.

The AWHS variant is included in the results to highlight
the contribution that the HPDi tournament selection operator
makes to ACROMUSE’s diversity and fitness performance.

VI. Benchmark Functions

This section introduces a range of multimodal function
optimization benchmarks to which the ACROMUSE and ref-
erence GAs are applied. Benchmark functions include Deb
et al.’s M1, M2, and M4 [48], De Jong’s M6 function [12],
Goldberg et al.’s M7 [43] and Horn and Goldberg’s M9 [49].
These benchmarks have been widely and recently employed
in assessing the performance of niching GAs [31], [50]–[53].

The functions M1, M2, and M4 [48] are employed to
investigate the diversity creation and maintenance properties
of each algorithm. These benchmarks are 1-D (encoded as
30 bits), five-peaked sinusoidal functions. Although these
functions are simple to optimize fitness-wise, many GAs (in-
cluding niching GAs) have great difficulty in maintaining more
than one solution [11]. These benchmark functions provoke
interest because of their multimodality and have consequently
been widely employed [31], [54] for the investigation and

comparison of niching and diversity-maintaining evolutionary
algorithms. The M6 (also known as Shekel’s Foxholes) is a
more complex 34-bit encoded, 2-D, 25-peaked function which
has been widely used to assess niching GA performance [11].

For the purpose of investigating each GA’s response to
fitness landscape change, a group of additional functions have
been created. The M2a (Fig. 28), M4a (Fig. 39), and M6a
functions are reversals of the M2, M4, and M6 functions
respectively. These reversed functions are employed to explore
how diversity maintenance leads to a more robust search.

The M7 and M9 problems are difficult and deceptive func-
tions with high dimensions and thousands of global optima.
These functions are designed to stress test the fitness and
diversity performance of the algorithms. All genomes are
binary coded. For all problems, the goal is to maximize fitness.

A phenotypic distance is employed by FS, DC (as in [11]),
and CHC in experiments M1–M6. This is because (for M1–
M6), each individual’s binary genotype maps onto a real-
valued phenotype. Inter-individual (M1–M6) phenotypic dis-
tance measures are more relevant than genotypic distances in
these cases. To illustrate, a 1-bit genotypic difference between
two individuals could be insignificant or substantial (from a
solution space perspective), depending on which bit is flipped.
If the least significant bit (of 30 bits) is altered, there is a
tiny phenotypic difference. Conversely, if the most significant
bit is changed, the difference is much larger. The relative
significance of each bit on the genome is not considered by the
genotypic distance measure, therefore, a phenotypic (solution
space) representation is employed.

A genotypic hamming distance is used by FS, DC (as in
[11]), and CHC for the M7 and M9 problems. The functions
M7–M9 do not have a real-valued phenotype associated with
their binary genotypic representations. Therefore, in these
cases a genotypic hamming-distance measure is employed.

ACROMUSE employs a Euclidean inter-individual distance
measure for both phenotypic (real-valued) and genotypic
(binary-valued) representations. This is because an average
of binary genotypes will generally not result in a binary
individual, and the hamming distance between a binary in-
dividual and the nonbinary average individual is ill-defined.
This (individual to average individual) distance measure is
necessary for ACROMUSE SPD and HPD calculations.

The definitions and fitness landscapes for each benchmark
function are introduced in the following sections alongside the
corresponding results for each algorithm.

1) Function optimization results:

a) M1 function;
b) M7 and M9 functions.

2) Fitness landscape change results:

a) M2–M2a transition;
b) M6–M6a transition.

3) ACROMUSE operator analysis (M4–M4a transition).

For every experiment, the best individual and average popu-
lation fitness scores for each GA are illustrated and discussed.
SPD and HPD trends are also presented for each algorithm.
Each result presented is the mean of 100 independent runs for
all GAs except for the CHC algorithm where only 1 GA run is
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Fig. 6. M1 fitness landscape.

illustrated. This is to preserve the signature CHC “converge-
restart” population cycle from averaging effects.

To verify statistical significance of the results, an inde-
pendent group comparison has been performed on the fi-
nal generation of each experiment. The final generation is
chosen to allow each algorithm diverge sufficiently. A one-
way analysis of variance (ANOVA) [55] is employed for
all cases except the M7 and M9 best and average fitness
results (as residuals of these experiments are not normally
distributed). For these non-normally distributed populations, a
nonparametric Kruskal–Wallis [56] test is performed instead.
A sample size of 100 GA runs is employed. All independent
group comparison tests returned significant results (p < 0.01),
rejecting the null hypothesis that all samples are derived
from the same population. Boxplots presented from the M9
experiment illustrate the distribution of best fitness, average
fitness, SPD and HPD scores for each algorithm. ANOVA and
Kruskal–Wallis statistical analysis results for each experiment
are available at [57].

VII. Multimodal Function Optimization Results

A. M1 Function

Fig. 6 illustrates the M1 fitness landscape while (15) defines
the M1 function, where x is restricted to the real-valued range
[0, 1] and is encoded using 30 bits

M1(x) = sin6(5πx). (15)

1) M1 Best Fitness: Fig. 7 illustrates best-fitness perfor-
mance for each of the seven reference GAs applied to the M1
benchmark function. This graph reveals that a global optimum
is quickly located by all algorithms. The M1 benchmark is
widely employed, not to examine a GA’s fitness performance
but to investigate how well each GA can maintain diversity
across the multimodal fitness landscape [11]. This diversity
maintenance is particularly difficult for TGAs where even
moderate selection pressure will result in convergence to a
single optimum.

2) M1 Average Population Fitness: The average population
fitness scores of each algorithm applied to the M1 benchmark
are illustrated in Fig. 8. The ACROMUSE and AWHS algo-
rithms maintain the lowest average fitness. This is the cost of

Fig. 7. M1 best fitness.

Fig. 8. M1 average population fitness.

applying large mutation rates to the exploration sub-section of
the population. ACROMUSE sacrifices low-average fitness in
exploration to achieve better fitness and HPD scores.

FS also exhibits a relatively low-average fitness trend,
reflecting its tendency to select outlying individuals removed
from the dominating optimum. These may be individuals
scattered by mutation. These individuals are given a stronger
chance to reproduce, as they lie outside the share-radii of
individuals located at other optima.

BRS, as expected, demonstrates a slowly rising average
fitness curve, as individuals are drawn toward a single opti-
mum by steadily rising selection pressure. The TGA converges
quickly to a high-average fitness value, primarily as a result
of static selection pressure and a low-mutation rate.

The CHCs average fitness graph reveals the dynamics of the
algorithm’s soft-restart. The high-mutation rate employed by
this re-initialization causes a sudden dramatic fall in average
fitness scores. This drop is quickly remedied by the algorithm’s
strong cross-generational survivor selection mechanism. DCs
highly elitist cross-generational truncation selection ensures a
monotonically rising average fitness curve (in a static environ-
ment), as mutated individuals only progress if they are superior
to their parents.

3) M1 SPD: Fig. 9 illustrates the SPD trend of each
GA applied to the M1 benchmark. The FS, ACROMUSE
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and AWHS algorithms maintain high levels of SPD through
different mechanisms. FS encourages diversity by penalizing
individuals which lie within a share radius of each other. These
fitness penalties encourage the selection of individuals that lie
in other remote areas of the fitness landscape. ACROMUSE
and AWHS not only maintain healthy diversity through adapt-
ing selection pressure, but also introduce new diversity through
the exploration section of their populations. This adaptive
exploration section introduces fresh diversity and searches for
previously undiscovered optima in the fitness landscape.

ACROMUSE demonstrates the best SPD performance of
all the algorithms tested. Although ACROMUSE employs the
same crossover and mutation mechanisms as the AWHS, its
selection operator favors both fitness and diversity contri-
bution (rather than only fitness). As a result, ACROMUSE
outperforms the AWHS from a diversity perspective. Fig. 9
illustrates that this diversity consistently exceeds the initial
random diversity of the population. This is achieved by indi-
viduals congregating at peaks phenotypically distant from each
other.

From the SPD trends (Fig. 9), the CHCs signature
“converge-restart” cycle is the most distinctive. This large SPD
oscillation is caused by a large mutation rate (0.35) being
applied to copies of the best-individual when the population
has fully converged. This essentially corresponds to a random
re-initialization of the population in the general neighborhood
of the best individual. The flat (low diversity) areas between
spikes reflect, not a completely converged population, but a
population where continued crossover is allowed by very low-
hamming distances between individuals. As 30 bits are em-
ployed to represent each individual’s phenotype (in the range
[0, 1]), a difference of several least significant bits between
individuals is insignificant when observing the phenotypic
diversity of the entire population. More frequent restarts could
be initiated by increasing (from zero) the minimum hamming
crossover threshold required to cause a soft-restart.

The TGA employs static selection pressure with a low-
mutation rate and consequently converges very quickly, as
illustrated by its low-SPD scores. This trend can result in
premature convergence at a sub-optimal solution. As the M1
benchmark optima all share identical fitness, this is not an
issue. BRS demonstrates slower convergence than the TGA,
as initially weak selection pressure steadily rises during evo-
lution. DC steadily loses diversity but at a much slower rate
than BRS, TGA, and CHC. Loss of DC diversity is caused
by the migration of individuals toward dominating peaks.
This slow loss of diversity is discussed in detail in Section
VII-A5 regarding the distribution of each algorithm’s popula-
tion across M1s five peaks (Note: In this paper, the word peak
and niche are used interchangeably).

4) M1 HPD: Fig. 10 illustrates the HPD scores achieved
by each algorithm. ACROMUSE demonstrates the best healthy
diversity performance (HPD) of all the algorithms tested. HPD
is increased from the beginning and remains high throughout.
This is the result of rewarding both fitness and diversity
contributions in the selection process. Individuals tend to move
toward niches that are phenotypically distant from each other,
thus providing a broad diversity of potential solutions. HPD

Fig. 9. M1 SPD.

Fig. 10. M1 HPD.

trends for FS and AWHS are similar to those obtained from
the SPD results (Fig. 9).

The CHCs lower HPD spikes (compared to its SPD spikes)
reflect that standard (low-fitness) diversity, rather than healthy
diversity is being introduced to the population through the
restart process. These random mutations generally tend to have
a negative effect on fitness, thereby leading to a smaller degree
of healthy diversity (HPD).

The TGA and BRS algorithms again exhibit similar HPD
behavior to that observed in the SPD graphs (Fig. 9). Fast
TGA and slower BRS convergence demonstrate the properties
of these algorithms. A notable difference, however, is the
level of HPD maintained compared to SPD when the TGA
and BRS populations are converged (stabilized post-generation
150). When the population is converged, SPD values for TGA
and BRS hover around 0.01. This is evidence of the mutation
rate (Pm = 0.01) continually introducing diversity. In contrast,
the HPD trend rarely strays from zero, reflecting the generally
fitness-destructive nature of this mutation. DC, similar to its
SPD trend, also slowly loses HPD as evolution progresses.
The reasons for this are outlined in Section VII-A5 when
discussing DC’s population distribution across peaks.

5) M1 Niches Maintained: Fig. 14 displays the average
number of peaks on which each algorithm maintains a pres-
ence during the course of evolution. The M1–M4 functions
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Fig. 11. Potential outcomes of a cross between an individual from class A
and an individual from class B. If combination AA and BB were to occur,
there is a strong possibility of diversity loss.

Fig. 12. DC selection and crossover: C1 will replace P1, thereby eliminating
the individual near the 0.7 peak. Parent and children phenotypes and fitness
scores are displayed alongside their inter-phenotypic distances.

comprise five peaks. The aim of niching GAs is to maintain
a continued presence on as many peaks as possible. Fig. 14
displays the performance of each GA on this task. As in [11],
a peak is considered maintained if at least one population
element exists in the basin of attraction of that peak, and that
individual has a fitness of at least 80% of that peak’s height.

The TGA is the quickest to converge to a single peak
through strong selection pressure. CHC also converges quickly.
However, its soft-restart introduces novel random diversity
periodically. The number of peaks maintained by CHC, even
during soft-restart rarely exceeds two.

DC begins by promoting its initial randomly distributed
population to each of the five peaks in the landscape. How-
ever, this initial presence on each peak is slowly eroded by
migration caused by a combination of the crossover operator
and the cross-generational elitist selection mechanism. In [11],
an analysis of DC makes ideal assumptions regarding the
crossover operator. Mahfoud states that given three classes
of individuals {A, B, C}, crossing A with B or C always
yields one element from each class involved in the cross. These
crosses will be true of an ideal crossover operator. However, a
stochastic crossover operator between two parents P1 (A) and
P2 (B) can produce with equal probability, any of the four
combinations of children C1 and C2 as indicated in Fig. 11.

The rightmost permutations of AA and BB will automati-
cally result in a loss of diversity if both children outperform
their parents. This is illustrated with an example taken from
DC experiments; Fig. 12 illustrates a microcosm of DC’s
selection and crossover process. Parent and children pheno-
types and fitness scores are displayed alongside their inter-
phenotypic distances. As Distance(P1, C1) + Distance(P2, C2)
≤ Distance(P1, C2) + Distance(P2, C1), individual C1 will
replace P1, because C1 is fitter.

Fig. 12 demonstrates DC genetic drift since a parent around
the peak at 0.7 is lost in favor of a fitter offspring at the
0.9 peak. Extrapolating from this, it is evident how a group

Fig. 13. DC selection and crossover: C1 will replace P1, resulting in the
genetic drift of an individual from the peak at 0.1 to the peak at 0.3.

of individuals at one peak, which are slightly better than
individuals at another peak, will slowly dominate the selection
procedure.

In addition, aside from crossover creating two children
similar to a single parent, children resulting from crossover
may be from a different class than either parent. In Fig. 13,
an example is illustrated of how crossover creates an individual
(near the 0.3 peak) from neither of the parent classes (near the
0.9 and 0.1 peaks). As C2 is fitter than P2, this results in the
loss of an individual from the 0.1 peak in favor of the peak
at 0.3.

These particular examples demonstrate the possibilities for
DC genetic drift and explain DC’s SPD, HPD, and niches
maintained results. These examples also serve to outline the
tremendous influence that crossover has on the DC algo-
rithm. Regarding these crossover possibilities, Mahfoud [11]
acknowledges that for functions with multiple global optima,
the migration of individuals discussed above will occur freely,
inevitably resulting in genetic drift. In addition, Mahfoud
states that (as demonstrated by these results) DC will drift
much more slowly than the TGA.

The drift demonstrated in M1 could be stalled somewhat
through a mechanism warranting a child’s fitness to be better
than its parent’s fitness by an amount greater than a threshold,
in order to progress to the next generation. This results in
the elimination of drift caused by small differences in fitness
between parent and child. These small fitness differences are
very common given that 30 bits are used to represent a number
in the range [0, 1]. Mahfoud [11] deals with this problem by
incorporating a slight design change that requires offspring be
strictly fitter than their parents in order to progress to the next
generation. By increasing the degree by which children must
outperform their parents, further reduction in drift occurs at
the expense of “survival of the fittest.” This mechanism has
been implemented and it does indeed reduce drift in the M1
benchmark, where all optima are at equal heights. As expected,
however, this fitness threshold does nothing to mitigate drift
when peaks are of varying heights (i.e., in the M4 function).

FS and ACROMUSE perform similarly in terms of presence
across peaks with roughly four peaks maintained consistently
across generations (Fig. 14). This FS result differs from other
work [11], [48] which demonstrates that FS can maintain
all peaks throughout evolution. A reason why FS does not
perform as well as [11] and [48] is that the population size used
in this paper is significantly smaller. With larger population
sizes, FS and ACROMUSE can maintain coverage over all
five peaks. However, the goal of this research is to develop
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Fig. 14. M1 number of niches maintained. A niche is considered maintained
if at least one population element exists in the basin of attraction of that peak,
and that individual has a fitness of at least 80% of that peak’s height.

and compare GAs that can search effectively using smaller
population sizes; this is required because fitness evaluations
of real world (e.g., robotics) controllers are extremely costly
time-wise. ACROMUSE has been designed to effectively
exploit and explore a population size of 40.

It is interesting to note that although DC initially main-
tains a higher number of peaks than ACROMUSE, its HPD
value is lower. In addition, FS, ACROMUSE, and AWHS all
demonstrate similar performance in terms of peaks maintained
but ACROMUSE maintains much higher SPD and HPD than
AWHS and FS. This is because of ACROMUSE’s ability
to cluster more individuals toward high-fitness peaks at the
outskirts of the phenotypic fitness landscape. This may be of
interest for real-world application (e.g., gaming or robotics
predator–prey strategies) where maximal phenotypic diversity
is of benefit.

B. M7 and M9 Functions

In order to perform challenging tests on the GAs, the M7
and M9 benchmark functions are employed. M7 is a massively
multimodal deceptive function [11], [43] comprising of five
6-bit bimodal subfunctions. Each subfunction is a function
of unitation with global optima located at x = 000 000 and
x = 111 111. The total number of optima in M7 is 5 153 632
of which 32 are global. The maximum fitness score attainable
is 5. Fig. 15 illustrates the fitness landscape of a single
subfunction.

M9 is a highly challenging minimum distance function
[11], [49] containing 2197 optima of which 27 are global.
Overall fitness is the sum of fitnesses over three 8-bit deceptive
subfunctions. The maximum fitness score attainable is 30. The
M9 benchmark problem is described in more detail in [11].

1) M7 and M9 Best Fitness: The highly multimodal M7
and M9 test problems ideally serve to highlight the limitations
of TGAs converging prematurely at sub-optimal solutions.
This can be observed from the leveling-out of best fitness
scores in both M7 (Fig. 16) and M9 (Fig. 17) best fitness
results. These results further underpin the need for diversity-
maintaining and diversity-introducing GAs. With the M7 test

Fig. 15. M7 is comprised of 5 of these deceptive unitation subfunctions.

Fig. 16. M7 best fitness (max possible fitness = 5).

problem, the TGA and CHC algorithms become prematurely
converged while all other test algorithms succeed in locating
the best solution. ACROMUSE performs marginally best of
these in locating a global optimum first.

With the more difficult M9 problem, ACROMUSE’s di-
versity and fitness-rewarding selection scheme performs sig-
nificantly better than the other algorithms in achieving the
highest best fitness scores (locating a global optimum on all
occasions). ACROMUSE owes its success to its novel em-
ployment of separate population subsections to simultaneously
exploit and explore. In contrast, the massively multimodal and
deceptive nature of this problem causes difficulties for DC and
FS in escaping sub-optimal solutions. This is because FS and
DC have a policy of maintaining a continued presence at these
optima, rather than sufficiently introducing the novel diversity
required to locate a deceptive solution.

Boxplots for each algorithm (Fig. 18) observed at generation
950 of the M9 problem reveal that FS and BRS attain similar
best fitness scores with values ranging from 18 to 30 (max
fitness). Both FS and BRS are negatively skewed with both
medians found at 22. The mean best fitness scores of each
algorithm are indicated by the crosshairs in Fig. 18. On
average, DC achieves higher best fitness scores than FS and
BRS for M9. While FS, BRS, CHC, ACROMUSE and AWHS
all successfully locate a global optimum on at least one
occasion, DC and TGA fail on each of the 100 GA runs
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Fig. 17. M9 best fitness (max possible fitness = 30).

Fig. 18. M9 best fitness boxplots observed from 100 samples taken at
generation 950. The mean of each group is illustrated by the crosshairs.

allowed (Fig. 18). ACROMUSE and AWHS perform best, with
ACROMUSE locating a global optimum on every occasion.
CHC exhibits the largest inter-quartile range, reflecting con-
vergence to multiple different solutions across the 100 runs.

2) M7 and M9 Average Fitness: M7 and M9 average
fitness results (Figs. 19 and 20) resemble in some respects
the trends from the easier M1 problem. Firstly, ACROMUSE
and AWHS fitness scores are quite low as a result of the
negative effects of mutation in the exploration segment of
their populations. Similarly FS’s selection of individuals ly-
ing outside more heavily populated niches reduces average
fitness scores. DC and BRS exhibit steadily rising average
fitness scores through different mechanisms. BRS’s steadily
rising selection pressure ensures that evolution’s search has a
better chance of escaping local optima that might prematurely
trap the TGA’s population. DC’s cross-generational elitist
selection ensures that average fitness always monotonically
increases. The TGA average fitness trend plateaus quickly
as its population prematurely converges to a single optimum.
This convergence may be confirmed by studying the low SPD
(Figs. 22 and 23) and HPD (Figs. 25 and 26) values and
identical best (Figs. 16 and 17) and average (Figs. 19 and 20)
fitness scores. CHC also exhibits a flattening out of average
fitness as the population converges about a single solution.
This is illustrated by almost identical average and best fitness

Fig. 19. M7 average population fitness.

Fig. 20. M9 average population fitness.

scores. The soft-restart oscillation, although observable for
the M9 (Fig. 20) problem, is notably absent in the M7
result (Fig. 19). This absence of the restart is caused by the
highly multimodal nature of the fitness landscape (see Section
VII-B3 for discussion).

Average fitness score boxplots (Fig. 21) observed at gen-
eration 950 of the M9 function reveal that TGA, CHC,
and BRS have the largest ranges. This indicates that these
algorithms tend to converge to different optima on different
runs. This converging tendency is reminiscent of Fig. 1. FS
exhibits lower variation in values, indicating more consistent
behavior across runs while DC, AWHS, and ACROMUSE
demonstrate the smallest ranges, indicating a narrower vari-
ability and more consistency in the algorithms’ average fitness
behaviors.

3) M7 and M9 SPD: M7 (Fig. 22) and M9 (Fig. 23) SPD
trends include many similarities to the M1 function (Fig. 9)
SPD results. ACROMUSE demonstrates the best diversity
performance. FS and AWHS exhibit high-SPD scores while
BRS and TGA demonstrate low SPD/HPD, reflecting what
would be expected from their differing selection strategies
(i.e., high-TGA convergence with slower convergence from
the BRS algorithm). DC’s SPD results for M7 mirror its M1
experiment behavior. However, the DC SPD trend for the M9
differs somewhat from other experiments as it quickly falls
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Fig. 21. M9 average fitness boxplots observed from 100 samples taken at
generation 950.

before rising slowly. This is due to the deceptive nature of the
problem, where the basins of attraction of the various local
optima lead solutions further away from each other thereby
causing a slow increase in SPD. The progressively rising
average fitness scores confirm this migration. This average-
fitness trend also explains the corresponding slow increase in
HPD (Fig. 26) values (higher average fitness leads to higher
fitness-weighted healthy diversity).

It is interesting to note from the M9 average fitness graph
(Fig. 20) that both BRS and DC exhibit steadily rising av-
erage fitness scores. However, from observing the different
SPD/HPD trends in Fig. 23 it is clear that while DC’s popu-
lation is moving toward multiple optima, BRS is converging
toward a single solution. This serves to highlight that fitness-
behavior alone is not enough to classify an algorithm’s overall
behavior.

The CHC algorithm’s diversity behavior is of interest be-
cause of the lack of random restarts in the M7 benchmark. This
is due to the highly-multimodal nature of the M7 problem,
where many solutions share the same fitness score but possess
radically different genotypes. The CHCs cross-generational
truncation selection does not exhibit a strong enough selection
pressure to focus search on any one of these solutions. As all
individuals share the same fitness (as indicated by identical
best and average fitness scores), no selection bias is afforded
toward any single individual. In addition, as these individuals
have different genotypes, crossover is always possible, mean-
ing that no soft-restart is triggered.

All GAs, except DC, applied to the M9 problem reveal
narrow SPD ranges (Fig. 24), reflecting consistent diver-
sity behavior from each algorithm. ACROMUSE consistently
maintains the highest diversity with AWHS in second place.
TGA, BRS, and CHC consistently maintain low levels of
diversity. CHC outliers reflect occasional random restarts.

DC exhibits the highest SPD variability of the algorithms
investigated. Although DC generally maintains high-SPD lev-
els, on occasion its population converges dramatically. As
observed from the average fitness boxplots (Fig. 21), DC
maintains a narrow range of average fitness scores. Also
notable from Fig. 18 is that DC has a narrow variability of best
fitness scores. This convergence of average and best fitness is
caused by strong cross-generational selection pressure. The

Fig. 22. M7 SPD.

Fig. 23. M9 SPD.

Fig. 24. M9 SPD boxplots observed from 100 samples at generation 950.

highly multimodal nature of the M9 function means that
individuals can maintain identical fitness scores and be situated
on different peaks. This explains the normally high measures
of SPD. On occasion, however, many individuals converge
toward a single peak, resulting in much lower SPD measures.

4) M7 and M9 HPD: The HPD (Figs. 25 and 26) trends of
each GA’s performance in solving the M7 and M9 functions
are broadly similar to the SPD results (Figs. 22 and 23). The
most notable difference is the narrowing of the gap between
AWHS HPD and FS HPD, compared to that between AWHS
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Fig. 25. M7 HPD.

Fig. 26. M9 HPD.

Fig. 27. M9 HPD boxplot observed from 100 samples at generation 950.

SPD and FS SPD. This may be attributed to the destructive
nature of mutation in the AWHS’s exploration section of the
population.

Narrow HPD ranges revealed in Fig. 27 reflect consistent
healthy diversity behavior from each algorithm. ACROMUSE
performs best with TGA and BRS maintaining the lowest
healthy diversity. Similar to the SPD results in Fig. 24, DC
exhibits the largest variability in HPD. This, as explained in the
previous section, is caused by varying degrees of population
convergence across GA runs.

Fig. 28. (a) M2 and (b) M2a fitness landscapes.

VIII. Fitness Landscape Change Results

A key motivation in designing the ACROMUSE GA is the
incorporation of an ability to adapt quickly to fitness landscape
change. In the real world, fitness landscape change is usually
manifested as an environmental change, e.g., an evolved robot
being transferred into a different environment. An example
in the natural world is the difficult challenge facing the polar
bear as the Arctic Sea ice melts. A population’s ability to react
quickly to such environmental changes is crucial for successful
survival of the species.

FS and DC both implement clever mechanisms for pro-
moting and maintaining diversity. FS encourages exploration
outside heavily populated niches while DC preserves already
existing niches across generations. BRS delays convergence
by slowly increasing selection pressure, while the TGA almost
immediately eliminates any diversity present in the population.
Aside from a very low-mutation rate, none of these algorithms
include a facility for the rapid introduction of novel diversity.

The ACROMUSE and CHC algorithms differ in that they
have an explicit mechanism for extensive exploration. ACRO-
MUSE achieves this through an adjustably sized exploration
section in the population. The CHC, akin to other saw-tooth
GAs [35], achieves diversity introduction through a population
re-initialization process.

The following results document the response of each algo-
rithm to fitness landscape change. The first experiment deals
with the M2 to M2a fitness landscape transition while the
second scales up complexity by investigating an M6–M6a
function transition. For the M2–M2a experiment, the time-
frame of most interest is post-150 generations (at which point
the fitness landscape change occurs). For the M6–M6a test,
the fitness landscape change occurs at generation 250.

Since the M2 and M6 test functions possess multiple optima
of differing heights, a challenge is posed to converging GAs in
introducing the novel diversity required to relocate the optimal
solution after a fitness landscape change.

A. M2–M2a Transition

The fitness landscapes (Fig. 28) and function definitions of
the M2 and M2a benchmarks are introduced in this section.
Equations (16) and (17) describe the M2 and M2a benchmark
functions respectively. The real-valued variable x is restricted
to the range [0, 1] and is encoded using 30 bits

M2(x) = e−2(ln 2)( x−0.1
0.8 )2

sin6(5πx) (16)

M2a(x) = e−2(ln 2)( 0.9−x
0.8 )2

sin6(5π(1 − x)). (17)
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Fig. 29. M2–M2a best fitness.

1) M2–M2a Best Fitness: Fig. 29 illustrates the best fitness
scores of each GA applied to the M2–M2a function transition.
It is interesting to note that the ACROMUSE algorithm
performs best in the event of fitness landscape change. This
is due to the diversity of solutions already preserved in the
population and the ability of the exploration section to search
for new and better optima.

The TGA and BRS algorithms perform poorly after
environmental change, failing to introduce the diversity
required to locate better optima. DC does not fare any better.
Due to the slow genetic drift inherent with the DC algorithm,
particularly in landscapes where different peaks have differing
heights, the converged DC population performs badly in
introducing new diversity.

The converged CHC population initially has a dramatic fall
in best fitness. However, a soft-restart triggered shortly after
environmental change successfully introduces the diversity
required for recovering the global optimum.

FS best fitness scores do not immediately suffer as much
as those of the TGA, BRS, DC or CHC due to its higher
diversity levels prior to the environmental change. However,
FS’s inability to introduce novel diversity seriously affects its
capacity to relocate the global optimum.

2) M2–M2a Average Fitness: Fig. 30 illustrates the average
fitness scores for each test algorithm applied to the M2–
M2a benchmark. Rapid deterioration in average fitness occurs
for all GAs immediately after fitness landscape change at
generation 150. This is caused by the disruption of the high-
fitness points previously occupied by each GA’s population.

3) M2–M2a SPD and HPD: SPD and HPD scores for each
test algorithm (Fig. 31) verify that the level of best fitness
degradation is positively correlated with the level of diversity
present in the population. DC, TGA, BRS, and CHC all suffer
catastrophic immediate loss of fitness, through maintaining
the lowest diversity of the GAs in question. This serves to
highlight the vital importance of genetic diversity within a
population.

As illustrated in Fig. 32, ACROMUSE again performs best
in terms of HPD performance. This is due to the maintenance
of healthy diversity through the adaptive HPDi selection
operator and through the introduction of fresh diversity by
the exploration division of the population.

Fig. 30. M2–M2a average population fitness.

Fig. 31. M2–M2a SPD.

Fig. 32. M2–M2a HPD.

CHC HPD spikes are again lower than CHC SPD spikes,
due to the (low-fitness) random nature of diversity being
introduced during soft-restart.

4) M2–M2a Niches Maintained: ACROMUSE and AWHS
consistently maintain the widest coverage of M2’s peaks
(Fig. 33). However, although ACROMUSE and AWHS
maintain a similar number of peaks, their distribution of
individuals is not equal. As illustrated in Fig. 32, ACRO-
MUSE maintains higher HPD values than AWHS meaning that
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Fig. 33. M2–M2a number of niches maintained.

Fig. 34. M6 fitness landscape.

healthy individuals tend strongly toward more phenotypically
distant peaks in the landscape.

For the M2 problem, a similar number of peaks is main-
tained (Fig. 33) by each algorithm compared to the M1 result
(Fig. 14). A key difference is the more rapid convergence of
the DC population, caused by genetic drift through crossover
and selection toward the single global optimum.

FS also suffers relative to its performance on the M1
problem. FS exhibits drift toward the higher peaks. This drift
of individuals is related to the fitness carrying capacity of
the niches. As outlined earlier (Section VII-A5), full coverage
of the landscape could be achieved by increasing population
size. This research, however, is interested in developing an
algorithm that performs well with small population sizes, due
to the costly nature of fitness evaluation in the real world.

B. M6–M6a Transition

To investigate a more difficult example of fitness landscape
change, the complexity of the task is scaled up to the M6–
M6a function transition. The M6 peaks range from 476.191
to 499.002. Fig. 34 illustrates the fitness landscape for M6
while the definitions for M6 and M6a are detailed as

M6(x, y)

= 500 − 1

0.002+
24∑
i=0

1/[1 + i + (x − a(i))6 + (y − b(i))6]

(18)

Fig. 35. M6–M6a best fitness.

Fig. 36. M6–M6a average population fitness.

M6a(x, y)

= 500 − 1

0.002 +
24∑
i=0

1/[1 + i + (−x − a(i))6+(−y − b(i))6]

(19)

where, a(i) = 16 [(i%5) − 2] and b(i) = 16(�i/5� − 2).
1) M6–M6a Best Fitness: The best fitness graph (Fig. 35)

includes an inset highlighting the environmental change.
ACROMUSE deals best with fitness landscape change, as
best-fitness is barely affected. An interesting point to note
is how, though the AWHS suffers fitness degradation in the
initial stage after environmental change, it quickly recovers
to optimal fitness, due to the exploration section of the
population. DC, BRS, and TGA all fail to rediscover the global
optimum after the fitness landscape change.

2) M6–M6a Average Fitness: Average fitness trends
(Fig. 36) reflect the same behavior exhibited earlier on simpler
problems, with ACROMUSE and AWHS exhibiting the lowest
average fitness scores.

3) M6–M6a SPD and HPD: SPD (Fig. 37) and HPD
(Fig. 38) also reflect similar trends to those previously ob-
served. DC behavior is interesting in that it experiences a
sudden increase in diversity after the environmental change.
This can be explained by the spreading out of individuals
across the fitness landscape as they move toward the global
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Fig. 37. M6–M6a SPD.

Fig. 38. M6–M6a HPD.

optimum. Once a new optimum has been located, diversity
drops as individuals converge again around this new solution.

The most interesting point to note in the HPD graph
(Fig. 38) is how FS maintains a higher HPD than AWHS’s
HPD. This can be contrasted with the SPD graph (Fig. 37)
where AWHS exceeds FS SPD scores. This reversal of
SPD/HPD scores between AWHS and FS can be explained by
the negative affects of mutation, resulting from the exploration
section of AWHS’s population. This is confirmed by AWHS’s
low-average fitness scores.

This reversal is interesting when it is viewed in relation
to best fitness degradation, directly after fitness landscape
change (Fig. 35). The most interesting result from the above
experiment is that the level of fitness degradation after an
environmental change is not directly linked to the level of
SPD in the population but instead is negatively correlated
with the level of HPD. This result should assist the design
of other algorithms for problems with changeable fitness
landscapes.

IX. ACROMUSE Operator Analysis

The results presented indicate that ACROMUSE performs
strongly when measured against a range of GAs on the chosen
multimodal benchmark functions. However, it is not obvious

Fig. 39. (a) M4 and (b) M4a fitness landscapes.

from results whether the improvement comes from diver-
sity introducing (adaptive mutation), or diversity maintaining
(adaptive selection) operators. Section IV-C1 describes how,
on implementing adaptive crossover and adaptive mutation
(AC + AM), GA performance does not improve as much as
expected. This is because strong nonadaptive selection keeps
choosing from the same converged group of relatively high-
fitness individuals in the exploitation section of the population.

Figs. 34–36 demonstrate that the key benefit of ACRO-
MUSE is the synergy of the adaptive operators working
together to achieve a balance between exploration and ex-
ploitation in offering the best results. Diversity maintenance
when there is no diversity to maintain is futile, as is the
introduction of diversity when such diverse individuals have
no chance of survival.

The following experiment compares the various ACRO-
MUSE adaptive operators. AC + AM are evaluated in isolation.
The AC + AM algorithm employs TGA tournament selection
(T size = 2). ACROMUSE and AWHS adaptive selection
operators (ACROMUSE-AS and AWHS-AS) are also tested
independently. ACROMUSE-AS and AWHS-AS employ tra-
ditional crossover (Pc = 0.9) and mutation (Pm = 0.01). These
crossover and mutation rates are identical to those employed
by the TGA in earlier results. The AC + AM, ACROMUSE-AS
and AWHS-AS operator results are compared to those from
the ACROMUSE and AWHS GAs.

The M4 and M4a test functions have been chosen to
compare the various operators. Fig. 39 illustrates the M4 and
M4a fitness landscapes while (20) and (21) define the functions

M4(x) = e−2(ln 2)( x−0.08
0.854 )2

sin6(5π
[
x0.75 − 0.05

]
) (20)

M4a(x) = e−2(ln 2)( 0.92−x
0.854 )2

sin6(5π
[
(1 − x)0.75 − 0.05

]
). (21)

Best fitness (Fig. 40) illustrates that ACROMUSE-AS and
AWHS-AS struggle to recover diversity after environmental
change. In contrast, the AC + AM, ACROMUSE and AWHS
recover diversity very quickly through the exploration section
of the population. The high levels of healthy diversity in
the ACROMUSE and AWHS populations ensure that they
perform best (smallest best fitness degradation) directly after
fitness landscape change. Another interesting observation is
that, although the AWHS-AS performance is not as good as
that of ACROMUSE-AS directly after environmental change,
AWHS-AS recovers best fitness faster than the ACROMUSE-
AS. This is because the AWHS-AS selection operator selects
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Fig. 40. Operator analysis: M4–M4a best fitness.

according to fitness scores while ACROMUSE-AS selects
according to both fitness and diversity contribution. This bias
in favor of fitness assists the AWHS-AS in concentrating on
potential high-fitness areas. This concentration is also reflected
in the falling AWHS-AS SPD scores (Fig. 42; generation 150–
300) as individuals migrate toward the higher fitness peaks.

The clear discrepancies between the behaviors of the oper-
ators applied individually and in unison demonstrate that the
increased performance of the ACROMUSE algorithm comes
from the balance of: 1) exploration and exploitation, and
2) diversity creation and diversity maintenance.

Average fitness results are presented in Fig. 41. AC + AM
demonstrates high-average fitness as the constant strong selec-
tion pressure gives little chance of selection to low-lying or
mutated individuals. This essentially negates the exploration
section of the population. Much work is done by this ex-
ploration section to introduce new diversity. This diversity,
however, is being immediately eradicated by strong selection
pressure. The adaptive selection operators (ACROMUSE-AS
and AWHS-AS) exhibit slower population convergence as
low-fitness or diverse individuals have more chance of being
selected. This is achieved by adaptively reducing tourna-
ment size according to HPD. The ACROMUSE and AWHS
algorithms with adaptive mutation, crossover and selection
combined exhibit the lowest average fitness scores as the
adaptive selection pressure allows for selection of individuals
from the exploration section of the population.

The SPD chart (Fig. 42) further reveals the dynamics of
the algorithms. ACROMUSE and AWHS maintain the highest
SPD scores, through the synergy of adaptive selection retaining
diversity and adaptive mutation introducing new diversity.

The ACROMUSE-AS SPD trend demonstrates the slow
convergence of the algorithm. Although selection is making
an effort to maintain diversity, the inevitable genetic drift of
selection, coupled with an inability to dramatically reintroduce
diversity, results in a slowly converging population.

The AWHS-AS population converges a lot more quickly
because its fitness-favoring selection mechanism results in
quicker diversity loss. In addition, the inability to reintroduce
diversity results in population convergence. An interesting
observation is the rise in AWHS-AS SPD from generation 80

Fig. 41. Operator analysis: M4–M4a average population fitness.

Fig. 42. Operator analysis: M4–M4a SPD.

to generation 150. This rise in diversity is a direct product of
the adaptive tournament selection operator. As HPD (Fig. 43)
shrinks and approaches 0.03, tournament size approaches 1.
This effectively means random selection, giving individuals
as a result of mutation (Pm = 0.01) equal chance of survival.
The selection of these individuals gives rise to the increasing
AWHS-AS SPD values between generations 80 and 150
(Fig. 42). This introduction of diversity is interestingly not
reflected in the HPD graph (Fig. 43), meaning such mutated
individuals are generally unfit.

In comparison to the SPD chart (Fig. 42), the HPD scores
(Fig. 43) for the AC + AM algorithm are much lower. This is
indicative of the destructive nature of mutation employed in the
exploration section of the population. The ACROMUSE and
AWHS algorithms maintain higher fitness-weighted healthy
diversity by adapting selection pressure according to HPD.
This adaptation of selection pressure allows for the protec-
tion of promising novelty in unexplored or remote areas of
the landscape. This contrasts with AC + AM where novelty
introduced is swiftly eliminated by the selection process. The
AC + AM result echoes the statement (from Section IV-C2)
that “a diverged parent population does not automatically
result in diverged offspring.”

The results presented serve to demonstrate the individual
and collective performance of the ACROMUSE adaptive mu-
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Fig. 43. Operator analysis: M4–M4a HPD.

tation, crossover and selection operators. The key contribution
of ACROMUSE is the synergy of the adaptive operators
working together to achieve a successful balance between:
1) exploration and exploitation, and 2) diversity creation and
diversity maintenance in offering the best results.

X. Conclusion

This paper presents ACROMUSE; an adaptive GA which
creates and maintains a diverse population of healthy individ-
uals through adaptation of mutation, crossover and selection
parameters.

The No Free Lunch theorem [58] states that “any two
algorithms are equivalent when their performance is averaged
across all possible problems.” This means that the goal of this
research cannot be to implement a GA that will outperform
other algorithms in all cases. The objective of the proposed
ACROMUSE algorithm is to create and maintain a diverse
population of healthy individuals, capable of adapting quickly
to environmental change and well suited to the efficient
navigation of highly multimodal fitness landscapes (i.e., those
present in many real world problems). Results indicated that
ACROMUSE achieves this objective.

For the multimodal functions employed, ACROMUSE out-
performs all other investigated algorithms with regard to
locating and recovering the best solution in the shortest time.
With regard to diversity and healthy diversity performance,
ACROMUSE achieves the highest levels of both SPD and
HPD diversity types. This healthy diversity greatly assists
recovery of good solutions quickly in the event of fitness
landscape change. The principal contributions of this paper
are summarized as follows.

1) HPD measure: By weighting each individual’s contri-
bution to diversity according to its fitness, a measure
of the population’s healthy diversity rather than stan-
dard diversity is determined. This measure provides a
new method for quantifying diversity and may be used
as an additional means of performance analysis for
population-based heuristics. An interesting result is that
the level of fitness degradation after an environmental
change is not directly linked to the level of SPD in the

population but rather is negatively correlated with the
level of HPD. This result should assist in the design of
GAs for problems with changeable fitness landscapes.

2) An adaptive tournament selection operator which regu-
lates selection pressure, according to HPD: This mech-
anism allows for the survival of outlying low-fitness
individuals when the population is converged from a
fitness perspective. This protection of innovation is very
important for escaping local-optima. Conversely, with
too much diversity, tournament size is increased to
promote “survival of the fittest.” This new selection
operator supports the goal of maintaining a healthy
population of diverse individuals, scattered throughout
the solution space.

3) HPDi selection: By selecting individuals not according
to fitness performance but to both fitness and diversity
contribution, the selection mechanism can explicitly pur-
sue both objectives of a healthy and diverse population.

4) An adaptive crossover operator which divides the pop-
ulation into two sections, namely, an exploration sec-
tion and an exploitation section: The size of each
is determined by the SPD measure. The exploration
section grows as a result of low diversity, while the
exploitation section expands with increased diversity.
Mutation is employed as a local-search mechanism in
the exploitation section of the population while it is
applied with higher probability (as an explorer) in the
exploration section.

5) ACROMUSE: A novel adaptive GA that combines
adaptive crossover, mutation and selection operators
to achieve a successful balance between exploitation
and exploration. ACROMUSE’s objective is to balance
these opposing forces, while targeting the creation and
maintenance of a diverse population of healthy indi-
viduals. Such a diverse healthy population is capable
of adapting quickly to environmental change and is
well suited to the efficient navigation of highly multi-
modal fitness landscapes (typically present in real-world
problems).

6) An in depth performance analysis and comparison of
several well-established GA implementations, namely:
a TGA, a GA with Boltzmann selection, CHC, DC,
and FS. The SPD and HPD analysis described in this
paper, coupled with average and best fitness performance
results, provide insightful observations on the interplay
between fitness and diversity for these algorithms.

The performance of ACROMUSE has been evaluated using
multimodal function optimization benchmarks and compared
to existing benchmark GA implementations. Statistically sig-
nificant results demonstrate that for the multimodal benchmark
functions employed, ACROMUSE outperforms other algo-
rithms both from a fitness and diversity perspective.

Maintaining a diverse population is important for increas-
ing population search coverage and for dealing with fitness
landscape change. Results demonstrate that through maintain-
ing high HPD, ACROMUSE copes well with environmental
change, restoring better fitness scores faster than all other
investigated algorithms.
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Analyzing the reference GAs, results show that FS performs
well from both a fitness and diversity perspective. However,
FS fails to maintain the same levels of SPD or HPD as
ACROMUSE. DC exhibits good fitness results, comparable
to those obtained from FS, though DC diversity is lost much
more steadily than with FS or ACROMUSE, due to genetic
drift inherent within the algorithm. In addition to this drift,
DC’s inability to introduce novel diversity results in poor
performance in the event of environmental change. CHC with
its population re-initialization mechanism performs competi-
tively (fitness and diversity-wise) with the other niching algo-
rithms, particularly in introducing novel diversity after fitness
landscape change. BRS demonstrates good performance in
escaping local optima in the initial stages of search but can still
become trapped at later generations, particularly after fitness
landscape change. Indeed, BRS was not designed to main-
tain long-term diversity. TGA exhibits all the negative side
effects associated with strong, nondynamic selection pressure
and low-static mutation rates (i.e., loss of diversity/premature
convergence at local optima).

Future work will investigate the application of ACROMUSE
to real-world tasks, e.g., evolution of robotics controllers,
where phenotypic rather than genotypic diversity will be
employed to control the GA. The HPD measure introduced
will be used in further experiments as a useful indicator of a
population’s healthy diversity.
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