
IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 2, JUNE 2011 155

Evolving Coordination for Real-Time Strategy Games
David Keaveney and Colm O’Riordan

Abstract—The aim of this work is to show that evolutionary com-
putation techniques (genetic programming in this case) can be used
to evolve coordination in real-time strategy games. An abstract
real-time strategy game is used for our experiments, similar to a
board game but with many of the properties that define real-time
strategy games. We develop an automated player that uses a pro-
gressive refinement planning technique when determining its next
immediate turn in our abstract real-time strategy game. We de-
scribe two types of coordination which we believe are important
in the game and then define measurements for both. We perform
twenty coevolutionary runs for our automated player and then an-
alyze the history of each run with respect to the success of the solu-
tions found and their level of coordination.We wish to show that as
the evolutionary process progresses both the quality and the level
of coordination in the solutions found increases.

Index Terms—Coordination, genetic programming, real-time
strategy.

I. INTRODUCTION

R EAL-TIME STRATEGY (RTS) games are military
simulations where several players or teams attempt to

destroy each others’ units and infrastructure in order to be the
last surviving player/team. The players compete for resources
distributed across the map so that they can build armies capable
of defeating their opponents. Often these games involve re-
searching different technologies and building a base composed
of many structures. These buildings are usually either for
defensive purposes (e.g., a gun turret), to boost the player’s
economy (e.g., an ore refinery), to enable certain research op-
tions for the player to pursue or allow the construction of units
helpful to the player in some way. Games such as “Starcraft,”
“Warcraft,” “Command and Conquer,” and “Age of Empires”
are very popular RTS game series.
Real-time strategy games are a perfect example of complex

multiagent systems. Classical games such as Chess or Go still
prove to be extremely difficult problems to solve. However, the
branching factor of such games, while large, still allows for
forward reasoning (searching forward from the current game
state to possible future game states to a reasonable depth of a
few turns). Real-time strategy games can easily contain more
units than these classical games have game pieces and require
that all units of all players are moved in parallel. Therefore, the
branching factor of such games is far larger than most classical

Manuscript received June 29, 2009; revised December 21, 2009 and March
25, 2010; accepted December 13, 2010. Date of publication April 25, 2011; date
of current version June 15, 2011.
The authors are with the Department of Information Technology, National

University of Ireland, Galway, Ireland (e-mail: d.keaveney1@nuigalway.ie;
colm.oriordan@nuigalway.ie).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TCIAIG.2011.2146783

board games and makes forward based reasoning approaches
less helpful for planning. Real-time strategy games often adopt a
goal-directed reasoning approach (or backward reasoning). This
is where units, or groups of units (e.g., squads), have goals and
then derive their actions backwards from these goals. This al-
lows a player’s behavior to be solved in a distributed fashion,
where individual units can be modeled as agents. These agents
can perceive their environment, communicate with other agents
and each have their own beliefs and goals.
Problem solving can be handled at varying levels of ab-

straction, ranging from strategic to unit level. While automated
players in RTS games today often exhibit good/acceptable
tactical behavior, we feel they lack the ability for good strategic
planning. Planning in RTS games can be distributed across dif-
ferent levels of abstraction through the use of a hierarchal task
network (HTN) [1]. First, the problem is solved at the strategic
level using high-level actions. After solving the problem at this
level, the high-level actions that compose the solution can then
each be reduced to lower level solutions, with the potential of
producing one or more lower level actions/tasks. These in turn
are decomposed into lower level partial plans until the lowest
level is reached, where actions in the plan are equivalent to
actions in the game.
Qualitative spatial reasoning (QSR) techniques can be used

to reduce complex spatial states such as that seen in RTS games
into abstract representations of that space [10]. Such abstraction
methods are necessary for high-level planning. These spatial
representations would look similar to how space is represented
in many turn based strategy board games. We feel, that there
is much completed research in the area of board games such as
Risk and Diplomacy that can be brought to work on RTS games.
However, most board games have different properties to RTS
games. Most RTS games have imperfect information about the
spatial state of the game (this is known as the fog of war) which
is a property unknown to board games where the spatial state of
the game is known to all players at all times. Also because RTS
games take place in real-time, the success or failure of a player’s
actions can depend entirely on the simultaneously performed
actions of the other players in the game (i.e., no player can be
sure what every other player is about to do). This is different to
most board games where each player takes individual turns and
has perfect information of the game. Diplomacy is one of the
few board games to model this type of imperfect information as
players act in parallel. Our test-bed game for the work shown
in this paper is called “Bellus Bellum Gratia” (BBG) [15] and
serves as an abstract RTS game. It is similar in ways to a board
game and includes imperfect information properties like those
present in RTS games through the use of fog of war and parallel
action phases.
In this paper, strategies are coevolved for this abstract real-

time strategy game. This abstract RTS game is used primarily

1943-068X/$26.00 © 2011 IEEE

156 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 2, JUNE 2011

because we only wish to learn coordination at this level of plan-
ning. It also reduces the computational expense associated with
evolutionary computation techniques and renders results more
amenable to analysis. These evolved strategies utilize a multia-
gent system framework and a progressive refinement planning
technique that allow solutions to coordinate move and attack ac-
tions. We describe two types of coordination we feel are impor-
tant in the game and define measurements for both. We intend
to show that evolutionary computation applied in this way can
be used to learn/evolve coordination.
Section II briefly discusses evolutionary computation and

multiagent systems, that are used in our work. Other research
in the area of evolutionary computation with respect to spatial
decision making and multiagent system approaches to strategic
board-games are discussed in Section III. The general rules of
the abstract game used as a test-bed in this work are outlined in
Section IV. Section V details the multiagent system automated
player and the progressive refinement planning technique it
uses. It also explains how the player’s behavior is determined
based on three functions. Section VI lists the functions and
terminals (properties of the game) used by the genetic pro-
gramming approach when evolving these three functions.
Section VII describes the two types of coordination we believe
are important in the game and defines general measurements
for both. Section VIII describes the experiments performed to
analyze the changes in the levels of coordination throughout
the evolutionary process. Sections IX and X detail the results
of these experiments and discuss our conclusions. Finally, in
Section XI, some possible future directions for our research are
discussed.

II. BACKGROUND

A. Evolutionary Computation & Genetic Programming

Evolutionary Computation (EC) describes computing tech-
niques inspired by biological evolution and other naturally oc-
curring operations. EC techniques have the potential to be very
computationally expensive. This is especially true in the com-
puter games domain where many iterations of a game may need
to be played in order to evaluate the fitness of each potential so-
lution. Also, EC cannot guarantee to find an optimal solution.
For these reasons EC techniques are not often used in com-
mercial game development. However, these techniques have
been used effectively in board games such as Chess [12], Go
[16], Risk [13], and Diplomacy [13] to real-time games such
as RoboCup [2], [4] and first person shooter (FPS) games [5],
[7]. The basic idea behind all of these techniques is that the
environmental pressure acting on a population of individuals
causes natural selection (i.e., survival of the fittest) which re-
sults in a rise in the population’s overall fitness over time [8].
First, an initial population of random individuals is created.
Then, given a fitness function (i.e., a function that describes
the ability of an individual solution to perform a given task
well), the entire population is assessed and a new population
is created by combining individuals selected from the current
generation. When selecting these individuals there is a bias to-
wards selecting fitter solutions. These new solutions can be con-

structed using crossover operators, which take two parent indi-
viduals to create new novel children, and mutation operators,
which act to disrupt the information held by a solution and en-
courage diversity.
Genetic programming (GP) is one such technique that seeks

to optimize computer programs based on their fitness. An
important property of GP is that it can search through large
search-spaces efficiently. The genetic programming paradigm
represents individuals (i.e., computer programs) as hierar-
chical compositions of functions and terminals appropriate
to the particular problem domain [18]. Furthermore, because
the GP representational language uses a computer program
structure neither the size of a solution nor its shape needs to
be constrained beforehand. This property of GP allows for a
much broader search thereby increasing the potential for better
solutions.

B. Coevolution

In nature, coevolution occurs when two or more interacting
species affect each other’s evolution. Usually, when evolution
is described, a species is adapting to a fixed environment when
in actuality it is often adapting to those other species also living
in that environment. Diffuse coevolution is the term used to de-
scribe evolution between groups of interacting species.
The fitness of individuals is determined by howwell they per-

form while interacting with others of their species and other
species. Because of this relative measure of fitness, once fit
solutions, may become unfit in subsequent generations due to
even better solutions being found. This can result in a “biolog-
ical arms race” where individuals are continuously adapting to
a likewise adapting environment. “Coevolution has been pro-
posed as a way to evolve a learner and learning environment
simultaneously such that progress arises naturally with minimal
inductive bias” [9].
In this work, all solutions interact with all other solutions

during evolution. There is no species distinction made between
individuals and crossover can occur between all solutions (i.e.,
we use single population coevolution).

C. Multiagent Systems

A multiagent system (MAS) is a collection of two or more
interacting, intelligent agents. An agent is generally considered
to be a computer system that is situated within an environment,
that has the capacity for autonomy in achieving its objectives
[11]. In this case, autonomy refers to an agent’s ability to act
without the need for outside intervention. An intelligent agent
is an agent that perceives it’s local environment and acts accord-
ingly to pursue its goals. It also has some degree of social ability
that allows it to interact with other agents.
The multiagent system framework used by our automated

player utilizes a forward planning refinement method that uses
backtracking. Forward (or progression) planning constructs
plans in a bottom-up manner by selecting actions, often using
a heuristic, and then adding this action to the partial plan [6].
While such planners are not guaranteed to find an optimal so-
lution, they often find strong plans quickly which is important
in a real-time environment.

KEAVENEY AND O’RIORDAN: EVOLVING COORDINATION FOR REAL-TIME STRATEGY GAMES 157

III. RELATED WORK

Johansson and Haard [13] have investigated multiagent
system approaches to designing player agents for the games
Risk (MARS bot) and Diplomacy (HaAI bot). These MAS
designed players performed very well against other automated
players designed for those games. Both approaches opted for
an entity-oriented agent system where each agent represents a
territory or unit in the game. An evaluation function serves to
assess the value of territories in either game and the values of
parameters used in this function wholly determine the auto-
mated player’s behaviour.
Work by Miles and Louis [17] shows how evolutionary com-

putation can be used in spatial decision making in RTS games.
A genetic algorithm determines how various influence maps,
each representing a particular property in the game, should be
combined to make new higher level influence maps that are then
used to answer certain spatial decisions (e.g., good defensive po-
sitions, safe and bountiful resource positions). Their coevolved
solutions were used directly as operational controllers rather
than for strategic planning and produced behaviors that were
as effective as their hand-coded strategies only more robust.
Evolutionary computation techniques have been used to

evolve coordinated strategies in multiagent systems such as
that seen in robot soccer teams. Work by Coelho et al. [4]
investigate the evolution of coordination strategies in robot
soccer teams. Each player (or agent) on a team is assigned to
perform in a particular area on the playing field. Each of these
team positions select their strategies for a unique population.
They show, through coevolution, that by selecting players in
such a way as to perform better with the already present team
members, teams that act on complimentary areas of the pitch
are evolved and are capable of defeating a team using a fixed
formation.
EC has also been used to improve the behavior of automated

players in first person shooter (FPS) games. Research by Cole
et al. [5] has shown how genetic algorithms can be used to tune
a FPS automated player’s parameters to outperform parame-
ters tuned by humans with expert knowledge. Work done by
Bakkes et al. [3] describes a team-orientated adaptive mecha-
nism (called “TEAM”) which evolves team tactics offline, that
outperforms previously seen static team AIs in the game Quake
3. Doherty et al. [7] investigate specifically how genetic pro-
gramming can be used to evolve robust team behaviors in FPS
games.

IV. A BRIEF DESCRIPTION OF THE ABSTRACT REAL-TIME
STRATEGY GAME “BBG”

The game “BBG” can be represented by an undirected graph
(like many board-games) (see Fig. 1 for the game map/graph
used in this paper’s experiments). Vertices represent the terri-
tories on the board (i.e., the hexagons) and edges the borders
between territories. Each player starts the game controlling a
territory known as their “homebase” (these are represented as
the grey territories in Fig. 1). At the start of the game each
player controls one unit located at their “homebase” territory.
All units in the game have the same attack strength (a strength of
1) but can be stacked in the same territory to sum their strength
together.

Fig. 1. Map used while evolving solutions.

Control of more territories increases a player’s maximum al-
lowed army size (an army is the set of all units belonging to
a player) and if a player’s current army size is less than their
maximum army size then that player can receive new units at
their homebase. Players can move to adjacent territories that are
empty or occupied by friendly units and can attack adjacent ter-
ritories that are occupied by enemy units. Occupying a territory
for a whole turn, if already controlled by an enemy player, will
neutralize the territory (remove the current controller) and if that
territory is neutral controlled, will take control of that vertex.
When attacks occur, the strongest force wins the battle. The

total attack strength is calculated as the sum of unit strengths
involved in the attack on a specific territory. Attacks involving
more than one territory attacking the same territory are given
extra attack strength. This bonus is referred to as a “flanking
bonus” and provides an additional twenty percent to the sum of
unit strengths involved in the attack per extra attacking territory.
Should the defending force equal or outnumber the at-

tackers, the attackers are simply repelled. However, should
the attacking force be the strongest, losses are inflicted on the
attacked territory.
Although the structure of the map is known, the dynamic in-

formation must be observed. Players can see all dynamic infor-
mation (i.e., occupying units) in territories that are controlled,
occupied, or adjacent to any occupied territory. A player wins
the game if all the opponent player’s units have been destroyed
and it is no longer possible to make more (i.e., he does not con-
trol any territories or his homebase has been occupied).

V. MULTIAGENT SYSTEM AUTOMATED PLAYER FOR BBG

A plan in the context of this research is the set of all “game
orders” to be given during the current turn of the game. When
creating a plan, the automated player creates a set of order agents
for each territory in the game that can currently be attacked or
to where units can be moved. An order agent represents a spe-
cific territory in the game. If this territory is empty or friendly
occupied, owned units in this territory or adjacent territories
can commit to this order. Should the territory be enemy occu-
pied, only owned units in adjacent territories can commit to this
order. Whenever an order agent successfully reaches the exe-
cution stage, all units committed to that order are issued with
‘game orders’ to move or attack from their current territory to

158 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 2, JUNE 2011

Fig. 2. Plan creation process.

the order’s territory. That is, while an order agent represents all
the units involved in moving to an area or attacking an area, a
game order represents a subset of these units all of which are
located at a specific territory with the intention of moving or at-
tacking the order agent’s territory.
A strategy in our game is determined solely by three be-

havioural functions: the “minimum needed” (MN) function,
the “order priority” (OP) function and the “edge priority” (EP)
function. The MN function determines the minimum required
number of units necessary to go ahead with a specific order.
During the incremental process of developing a plan, the OP
function determines what orders should receive an extra unit
and the EP function determines from which adjacent territory
that unit is committed.
First, after all potential orders have been created, each is then

assessed by theMN function and given a minimum unit require-
ment. The value remains constant throughout the plan creation
stage. An order agent must meet this requirement for it to be
considered successful and only successful order agents can be
involved in creating the final plan.
Next begins a progressive refinement planning technique,

whereby the current plan is created incrementally by commit-
ting one unit at a time to one of the available order agents. All
the orders are evaluated using the OP function. This function’s
purpose is to select an order that will then attempt to commit
one unit to itself. When this order has been found, another
function, the EP function, assesses all the edges belonging to
that order. These edges point towards all surrounding territories
with units that can be committed and include a loop edge that
points towards the order’s own territory. The edge with the
highest priority has the territory to which it points commit a

TABLE I
FUNCTION NODESET

unit to the highest priority order. This causes an incremental
change in the current plan and then the same process of unit
commitment occurs repeatedly until all the available orders
have committed all the available surrounding units to them-
selves. Because the functions used to evaluate the orders and
edges take certain plan-dependant parameters into account
(such as the number of already committed units) the results of
their evaluations can change as the plan changes (see Fig. 2 for
a detailed guide to the plan creation process).
At this stage, all orders are once again evaluated using the OP

function and sorted from worst to best. Beginning at the worst
order and working towards the best, each order is checked to
see if it has reached the minimum units required for its success
(determined at the very start of plan formation by the MN func-
tion). The first unsuccessful order found is removed from the
set of possible orders and has any units they had committed to
themselves released of their commitments. Should this happen,
this final order checking stage ends and the previous refinement
planning stage begins again with the newly released units free to
commit to other potential order agents and one fewer order agent

KEAVENEY AND O’RIORDAN: EVOLVING COORDINATION FOR REAL-TIME STRATEGY GAMES 159

TABLE II
TERMINAL NODESET

TABLE III
FITNESS FUNCTION

TABLE IV
SPREAD COORDINATION MEASURE

to consider. In this way, some unsuccessful order agents may get
another chance to reach their minimum unit requirement.
Eventually, the automated player will be left with a set of con-

sidered successful orders that make up the plan for the current
turn of our game.

VI. GENETIC PROGRAMMING

We use genetic programming (GP) to evolve strategies for
our abstract RTS game. Three functions determine the behavior
of our MAS automated player: the MN, OP and EP functions.
Our genotype contains three different trees to evolve all three
functions in parallel. Each of these trees has its own nodesets
and rules which determines the possible structures they can take.
Table I shows all of the function nodes we use when evolving

solutions. All three trees use these same function nodes. Table II
shows all of the terminal nodes we use when constructing trees
as solutions. Not all of these nodes are used by each of the three
trees in our genotype. The table marks those nodes used by a
specific function with an ‘x’.

TABLE V
ATTACK COORDINATION MEASURE

A. Coevolution and Fitness Evaluation

Each member of the population plays a set number of games
against other members of the population chosen at random. Each
game gives a fitness. The overall fitness of an individual is the
average of all fitnesses from all played games. The fitness per
game is based on how quickly a solution wins or loses the game

Fitness

Fitness Controlled

Fitness

The scalar values seen in the fitness evaluation function were
chosen to allow for a small range of fitnesses that assess the end
state of a game given the case of a draw.
Solution length penalization is also used. This is also known

as parsimony pressure and encourages smaller solutions over
larger ones.

B. Succeeding Generations and Reproduction Operators

When creating the next generation of individuals we use
elitism to clone the fittest individual from the previous popula-
tion directly into the new population. This ensures the survival
of our fittest solution from generation to generation.
All individuals chosen for reproduction are selected using a

tournament selection method. This method involves selecting a
subset of individuals chosen from the evaluated population at
random and then the fittest solution within this subset becomes
the selected individual. The size of this subset is called the tour-
nament size. It is a popular selection method as it provides an
easily tuneable parameter (the tournament size) that controls
how biased towards an individual’s fitness it should be when

160 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 2, JUNE 2011

selecting an individual (i.e., the larger the tournament size, the
less chance weaker individuals will be selected).
Other than crossover reproduction occurring, two types of

mutation reproduction are also used. The three reproduction op-
erators used when creating a new generation of individuals are
now described.
1) Crossover Operator: The crossover operator used during

the evolutionary process first selects two parent strategies. Next,
one of the three subtrees present in all solutions is chosen (i.e.,
one of the three functions). Parent “A” then has a random node
on that subtree selected. Another node is then chosen randomly
on Parent “B” from the same subtree. If this node is not of the
same node-set as that of the node chosen from parent “A” an-
other node is randomly chosen from the subtree. When both se-
lected nodes are of the same node-set, they are swapped with
each other, including all descendant nodes. This produces two
new trees which are the children of parents “A” and “B.” Both
of which are added to the new population.
2) Single Node Mutation Operator: This type of mutation

operator acts on a single solution and selects a random node
from any of the three subtrees. This node is then replaced with a
different node from the same node-set that must have the same
number of children as the selected node and have the same
node-set restrictions for each of these children. It is possible that
the first selected node is irreplaceable. In which case, no muta-
tion occurs. This type of mutation is not very destructive to the
genotype.
3) Sub-Tree Mutation Operator: This type of mutation op-

erator acts on a single solution and selects a random node from
any of the three subtrees. This node is then replaced with a new
subtree, the root node of which must be of the same node-set.
This type of mutation is more destructive to the genotype than
the single node mutation operator described previously.

VII. SPATIAL COORDINATION MEASURES

Throughout the whole game, gathering resources is very im-
portant. This is done by taking control of territories on the map.
Each territory gives a bonus to the number of units a player can
support and at each turn a player receives a set number of ad-
ditional units until that player’s total unit support is reached.
Therefore, the more territories a player controls on the map, the
larger the army that player will receive which in turn should in-
crease that player’s chance of winning.
In order to spread quickly, it is important to coordinate the

spreading of units. For example, given two units occupying an
already controlled territory, each with the option of moving into
one of two uncontrolled unoccupied territories (“territory a” and
“territory b”), there are six possible plans that can occur: both
could remain in their current territory, one could remain while
the other moved to “territory a,” one could remain while the
other moved to “territory b,” both could move to “territory a,”
both could move to “territory b,” or, the quickest way to gain
control of both territories, one could move to “territory a” while
the other moved to “territory b.” This type of coordination we
call “spread coordination.”
This type of coordination should dominate the opening

game-play of successful strategies. Later in the game when

both players meet, attacks can occur. Territories not yet con-
trolled become more and more likely to be contested by the
players. As attacks benefit from the number of separate territo-
ries involved in the attack (i.e., the total number of territories
involved in the attack acts as a multiplier for all the units
involved in the attack), we expect that units will be committed
to an attack in a coordinated way. We expect to see attacks
committing at least one unit from all the surrounding territories
that could possibly commit a unit, as this will yield the greatest
multiplier when calculating the total strength of the attack. This
type of spatial coordination we call “attack coordination.”

A. Spread Coordination Measure

Our global measure of spread coordination is the av-
erage of all locally perceived spread coordination at territories
contained in the set A. The set A contains all the territories that
are occupied and have the potential to spread into surrounding
enemy or neutral controlled territories (i.e., there are uncon-
trolled territories to move into and there is at least one unit
occupying the territory that can move into these uncontrolled
territories)

if
not applicable if

This measure assesses how well a strategy has moved units
into as many uncontrolled territories as is possible during a turn
in our game.
A spread coordination of 1.0 denotes perfect spread coordi-

nation (i.e., the total number of uncontrolled territories possible
to occupy were occupied). A spread coordination of 0.0 is the
worst possible value and describes a situation where no uncon-
trolled territory is occupied (assuming that such territories are
possible to occupy).

B. Attack Coordination Measure

Our global measure of attack coordination is the av-
erage of all locally perceived attack coordination against the set
of all attacked territories (i.e., set A)

if

not applicable if

This measure determines how well a strategy utilizes as many
friendly occupied territories surrounding attacked territories in
those attacks and therefore, how well it avails of the flanking
bonus provided by extra territories involved in an attack.
The maximum value for attack coordination is 1.0 and de-

scribes a situation where all attacked enemy territories were
attacked to some degree by all surrounding friendly occupied
territories. Lower values of attack coordination suggest not all
surrounding friendly occupied territories participated in the at-
tacks. A value of zero is not possible, since in order to classify
a territory as attacked at least one territory must be involved.

C. Coordination Measures: Discussion

Each of these coordination measures attempts to measure the
total tactical level of coordination across the whole map for each

KEAVENEY AND O’RIORDAN: EVOLVING COORDINATION FOR REAL-TIME STRATEGY GAMES 161

TABLE VI
GP SETTINGS

turn of the game. These measures are essentially the average of
all locally perceived degrees of coordination (tactical coordi-
nation) and since these local views often overlap there is often
some interference between these instances of locally measured
coordination. For example, two units, each from different terri-
tories moving into the same unoccupied uncontrolled territory
when only one unit was necessary. It is therefore important to
note that there may exist more coordinated states that are unde-
tectable using the above describedmeasurements. This is further
complicated by other issues such as enemies acting against the
success of actions, requiring the commitment of more than one
unit in order to be successful. In such situations, spreading too
thin may not be advantageous. These measures also ignore any
temporal element to a good spreading behavior such as the need
to stop in a territory for a set time in order to take control of it
and avail of the increased army size limit controlled territories
provide.

VIII. EXPERIMENTS

The purpose of these experiments is to see whether our
GP-evolved successful strategies that exhibit a high degree of
coordinated behavior.
We evolve strategies for our abstract RTS game over 20 runs

of evolution. The GP parameters for all these runs can be seen
in Table VI.
During the course of evolution the best strategy (the strategy

with the highest fitness) at each generation is saved for later
analysis. A sample set of these strategies for each run then takes
place in a round robin tournament involving 1000 games be-
tween all pairs of strategies (where strategies can play them-
selves). Each sample set contains the best strategies found at
generations 1, 2, 3, 5, 10, 50, 100, 300, and 500.
The game is played on the same map during all runs of evolu-

tion and can be seen in Fig. 1. Each hexagon in Fig. 1 represents
a territory of the map and the two shaded territories represent the
homebases (starting locations) for both opposing players.
During these tournaments, we create a coordination profile

and a control profile for each player–player pairing. A coordina-
tion profile records how coordinated a player is when spreading
and attacking. A control profile records the average number of
controlled territories at each turn in the game. A control pro-
files allows us to determine how successful a spreading behavior
truly is.
During each game, at every turn, the coordinated spread and

coordinated attack values (if applicable) are measured for each
player. The average value of those measures in the profiles is

Fig. 3. Average control profile for the 5-5 player–player pairing.

Fig. 4. Average control profile for the 5-500 player-player pairing.

then updated. It is important to note that these average values
may only represent a subset of all the played games because as
games finish they can no longer contribute to the average of later
turns. Fig. 3 shows the control profile for generations 5 played
against itself. It also shows five actual games that contributed to
this average and the number of games that make each average
at each turn.
Fig. 4 further demonstrates the previous point of how the av-

erage values of thesemeasures may only represent a subset of all
the played games, as games played against a much stronger op-
ponent are more likely to end quickly. In this figure the number
of games representing the average game quickly drops off be-
tween turns 15 and 20. Therefore, for this player-player pairing
only the data graphed until turn 15 is representative of all games
played by the pair.
These player-player profiles can then be averaged together

for each player to get an overall coordination profile for that
strategy. These averaged profiles are then compared to each
other in order to evaluate how these measures of coordination
change throughout the average game as the evolutionary process
progresses. These generalized profiles show an average from
a diminishing subset of games as turns progress (as seen in
Fig. 4). The first fifteen turns for all profiles generally represent
all played games, but then, as games begin to end, the trendmore

162 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 2, JUNE 2011

TABLE VII
THE AVERAGE COORDINATION MEASURE

and more represents games that take longer to finish. Therefore
these profiles are only general for the first fifteen or so turns.
Table VII shows the formula used to obtain the average coordi-
nation measure at each turn in the game.

A. Coordination Measurement Analysis

Attack coordination is not applicable in the first few opening
turns of the game. After the second turn in our game attacks
becomes possible and our measures for spread coordination and
attack coordination are no longer independent of each other. At
this very early stage of the game, we expect to see our initially
high spread coordination begin to drop as attacks are more and
more likely to take from the spreading behavior.
From previous experience with evolving strategies for our

game [14], aggressive solutions proved to be very successful,
and therefore, we would expect to see our measure for attack
coordination to be very high from as soon as it becomes appli-
cable (after turn two or three) to the end of the game. As evo-
lution progresses, we would also expect to see less interference
between attack and spread coordination.

IX. RESULTS

After analysing the coordination profiles for all strategies
within the sample set for each run, we determined that co-
ordination does appear to evolve, in general, as expected. In
analysing each run we considered three data sources. Our
primary sources of data are the coordination profiles for each
solution. Our secondary sources of data are the control profiles
for each strategy (a record of the average number of controlled
territories at any turn in the average game for each solution).
And our tertiary source of data for each run is the tournament
results. We categorized each evolutionary run into one of four
categories: expected results, unexpected coordination profiles,
unexpected control profiles and unexpected coordination pro-
files and control profiles. A smaller subset of strategies for each
of our original sample set is shown in the following results for
the purpose of increased clarity.

A. Expected Results

As already stated, in general, most evolutionary runs (i.e., 16
of 20) fall into this category. An analysis of one of these typical
runs is discussed in this paper and is referred to as run A.
As expected, strategies in run A evolved towards a high attack

coordination (see Fig. 5). The initially low value for attack coor-
dination is due to the fact that attacks are not possible during the
first two moves because players are situated a distance of three

Fig. 5. Attack coordination for run A.

Fig. 6. Spread coordination for run A.

away from each other at the beginning of all games. Attack co-
ordination continuously increases throughout this run until gen-
eration 100.
Spread coordination for all solutions is extremely high during

the first opening turns of all games and then falls off as attack
coordination comes into play. Initially spread coordination in
this run is high but then begins to drop off as the attack coor-
dination becomes more prevalent (see Fig. 6). However, during
generation 100 and 500 while there is little change in attack co-
ordination, the spread coordination begins to rise again. Solu-
tions that attack well seem to be more important than solutions
that spread well and when good attack coordination is evolved
only then does better spread coordination evolve.
As can be seen in Fig. 7, the number of territories taken under

control during the early game increases as evolution progresses.
Controlling territories is important to a good strategy as they are
the equivalent to resources in the game and allow a player to
produce more units proportional to the territories controlled.
Table VIII shows the round robin tournament results for

run A. Each column details the number of wins a strategy had
against other strategies. The diagonal details the number of
wins a strategy has against itself. This only serves to show how
many games came to a definite end (won or lost) and how many

KEAVENEY AND O’RIORDAN: EVOLVING COORDINATION FOR REAL-TIME STRATEGY GAMES 163

Fig. 7. Control profile for run A.

TABLE VIII
TOURNAMENT RESULTS FOR RUN A

were draws. These results for run A show strategies 1 and 2
to have performed very similarly. This is because they are the
same strategy (the best strategy found in the first generation was
still the best in the second generation). Later evolved strategies
perform better or similarly in the tournament against all other
strategies compared to earlier ones (i.e., the best strategy at
generation 500 is a dominant strategy against the other four
strategies).
The best strategy found at generation 5 draws often against

itself and previously evolved solutions. Generation 500 appears
to be the most successful strategy against all other strategies,
while forcing a draw with itself most of the time (742 draws out
of 1000 games).

B. Unexpected Coordination Profiles

Only two of the twenty runs of evolution produced data with
unexpected changes in the coordination profiles. The results for
both were similar. Therefore, we discuss the results of only one
of these runs and refer to it as run B.
In run B, the best evolved strategy in the first generation has

the best attack coordination than any other strategy evolved
thereafter (see Fig. 8). This quickly falls in generation 2 only
to rise back nearly as high in generation 5. Generation 100 im-
proves a little on its attack coordination and then in generation
500 we notice that it drops again to slightly below that seen at
generation 5. This differs from run A where the attack coordina-
tion seemed to increase as the evolutionary process progressed.
The spread coordination profiles for run B (see Fig. 9) drop

progressively from generation 1 to 5 and then shows improve-
ment from generation 100 to 500, similar to that seen in run A.
The control profiles for run B (see Fig. 10) clearly show a

dramatic increase from generation 1 and 2 to 5. Given that the

Fig. 8. Attack coordination for run B.

Fig. 9. Spread coordination for run B.

spread coordination for these first two strategies is quite high, it
is clear that a strategy with high spread coordination is not the
same as one that takes control of territories quickly. A strategy
could spread very well but not remain in a territory long enough
to take control of it. Therefore, it would seem that high spread
coordination does not always imply a smart spreading strategy.
The tournament results for run B (see Table IX) show that

generation 1 performs only slightly better than the best from
generation 2 (understandable given how diverse these initial
populations are). Generations 5 and onward once again show
improvement as evolution progresses as seen in run A.

C. Unexpected Control Profiles

One of the twenty runs of evolution produced unexpected
changes in the control profiles as the evolutionary process pro-
gressed. This run we refer to as run C.
The attack coordination profiles for run C (see Fig. 11) de-

velop somewhat similarly to run B. They start low but drop
much further in generation 5. However, the much later strate-
gies found at generation 100 and 500 evolve a very high attack
coordination.
The spread coordination profiles for run C (see Fig. 12)

show an increase in generation 5 which would explain the

164 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 2, JUNE 2011

Fig. 10. Control profile for run B.

TABLE IX
TOURNAMENT RESULTS FOR RUN B

Fig. 11. Attack coordination for run C.

corresponding fall in attack coordination. A higher spread coor-
dination than was seen in the previous generations produced a
better strategy at the expense of some attack coordination. This
then falls again in generation 100 as the attack coordination
increases substantially, but rises again at generation 500 as the
attack coordination is very high.
The control profiles for run C (see Fig. 13) show a continual

decline in controlled territories during the early stage of the
game most noticeably, the drop between generation 100 and
500. This seems very counterintuitive since as already men-
tioned the number of controlled territories is directly propor-
tional to the number of units available to a player. The rise in
attack coordination from generation 100 to 500 appears to be
responsible for the drop in spread coordination and likewise the

Fig. 12. Spread coordination for run C.

Fig. 13. Control profile for run C.

Fig. 14. Attack coordination for run D.

drop in the controlled territories. This highlights the importance
of an aggressive strategy.
The tournament results for run C (see Table X) are unlike the

previously seen tournaments, in so far as the strategy to per-
form best in the tournament is not that found at generation 500.

KEAVENEY AND O’RIORDAN: EVOLVING COORDINATION FOR REAL-TIME STRATEGY GAMES 165

TABLE X
TOURNAMENT RESULTS FOR RUN C

The best solution found at generation 100 considerably outper-
forms the best found at generation 500. Because we use coevolu-
tion when evolving strategies the fitness landscape is constantly
changing. As our population changes so too may the attractors
in our search space. This could lead to cycles during evolution
to other areas of the search where robust solutions to our game
exist.
While generation 500 is dominated entirely by generation

100, it is likely in response to the many changes in the fitness
landscape that have occurred between the intervening genera-
tions. It is possible that generation 500 performs well against
solutions found between generation 100 and 500 and that those
strategies may outperform generation 100 in kind. To be sure
this is what is happening, a round robin tournament between all
strategies at all generations would need to be played which is
extremely computationally expensive.

D. Unexpected Coordination Profiles and Control Profiles

Only one of our 20 runs of evolution returned unexpected data
for both our coordination profiles and control profiles. We refer
to this run as run D.
Once again, an early generation (generation 2 in this case) has

a very high attack coordination, only to drop at generation 5 and
again at generation 100. The best strategy found at generation
500 shows an increase once more, but not to as high a level as
that seen at generation 2.
Our spread coordination profiles for run D (see Fig. 15) show

an increase at generation 2 to as high as is seen throughout the
run. This then drops at generation 5 and again at generation 100
similar to the attack coordination at those generations. This is
somewhat similar to generation 2 in run B, where both attack
and spread coordination appears to drop.
Our control profiles for run D (see Fig. 16) show that the

rate at which territories are taken control of is at a maximum
for this run at generations 1 and 2 over the first 10 turns of
the average game but then drops off rapidly. Unlike run B,
where the drop in both types of coordination was a result of
learning a smarter spreading behavior, these results suggest that
the strategy’s ability to spread is good but that its ability to de-
fend or attack (spreading into hostile territories) is poor.
The tournament results for run D (see Table XI) show how

poor generations 1 and 2 actually are. Of the games played be-
tween the best strategies found at generations 1 and 2: genera-
tion 1 won 93, generation 2 won none and there were 907 draws.
It can also be seen that when both strategies play themselves
most games end in a draw. This shows that both strategies are
not very aggressive (they did not attack often enough or they did

Fig. 15. Spread coordination for run D.

Fig. 16. Control profile for run D.

TABLE XI
TOURNAMENT RESULTS FOR RUN D

not attack territories that were strategically important). At gen-
erations 5 and onward the number of games resulting in draws
becomes very small as solutions become far more aggressive.
Therefore the simultaneous drop in both attack and spread co-
ordination is because of a poor attacking behaviour that was co-
ordinated but not strategically clever.

X. CONCLUSION

In summary, the approach shown in this paper demonstrates
how to automatically generate strategies for a high-level RTS
game (there is no need for a prior set of training strategies) and

166 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 2, JUNE 2011

that in general, as strategies evolve and become stronger, coor-
dination is learned.
Twenty runs of coevolution were performed to learn strate-

gies for an abstract real-time strategy game in a geographically
static environment. A sample set of solutions was chosen from
each run to best show the evolutionary path. Each sample set
participated in a thousand round robin tournaments. We de-
fined what we believe to be two essential types of coordina-
tion: spread coordination and attack coordination. Each of these
measures of coordination were used to produce a coordination
profile for each strategy as it plays an average game. We then
analyzed how these profiles changed throughout the course of
evolution to determine whether either type of coordination im-
proved and the importance of each to a good strategy.
Firstly, it is important to note that neither of our measure-

ments for attack and spread coordination imply a good attack
or spread behavior. If an attack behavior lacks aggression,
strategies will evolve towards a more aggressive behavior at
the expense of either or both coordination measures. Also, if
a strategy lacks a clever spreading behavior (it spreads to the
same territory from different territories or does not stop often
enough to take control of territories), solutions will evolve
towards smarter behaviors at the expense of either or both
coordination measures.
However, if the strategies within a population are aggressive

and spreading in an intelligent manner then, in general, they will
evolve good tactical attack coordination first at the expense of
spread coordination, as aggression is very important to a win-
ning strategy (as seen in run A). Then, when the attack coordina-
tion reaches a high level, does the spread coordination begin to
recover. The spread coordination begins to increase with some-
times minor interferences with the attack coordination.

XI. FUTURE WORK

Our solutions are evolved in a static map environment
and might therefore perform poorly when the map the game
is played on is changed. Whether or not the efficacy of our
evolved solutions are robust to changes in the spatial environ-
ment or specific to the map shown in Fig. 1 is unknown. In a
future work we would like to analyze the effect of changes in
the spatial environment on the solutions evolved in this paper
in terms of coordination and overall effectiveness, and compare
the results from these strategies against a set of strategies that
has been evolved against a varying range of environments.
We wish to investigate how our automated player might learn

to coordinate itself temporally, as at the moment our automated
player plans only for the next immediate move in our game.
We also hope to show how genetic programming can be used to
learn cooperation between two or more automated players.
The eventual goal of our work is to apply our technique to

an actual RTS game. Such games are more complicated than
our current model represents. Specifically, the terrain may
have certain strategic properties (e.g., increased cover, other
resource types present, naval areas, impassable to land but not
air, etc.) and there may be various types of units each with
their own unique properties. But we feel that by adding to the

nodesets in our GP and perhaps tweaking the plan creation
process (e.g., by adding new order agent types such as “air,”
“land,” and “naval” variants on the “move” and “attack” order
agents already present), that creating a high-level plan for such
a game is easily viable. It is also worth mentioning that while
progressive refinement planning techniques, like that shown in
this work, cannot be guaranteed to find an optimal plan, they
are capable of returning good plans quickly. Therefore, we
believe that this technique will scale up well, computationally,
to more complex models of specific RTS games.

ACKNOWLEDGMENT

This work is being carried out with the support of the National
University of Ireland, Galway. The authors would also like to
thank the reviewers for their useful comments.

REFERENCES
[1] K. Erol, J. Hendler, and D.S. Nau, “HTN planning: Complexity and

expressivity,” in Proc. Nat. Conf. Artif. Intell., 1994, pp. 1123–1128.
[2] D. Andre and A. Teller, “Evolving team Darwin united,” in

RoboCup-98: Robot Soccer World Cup II, ser. Lecture Notes in
Computer Science, M. Asada and H. Kitano, Eds. Berlin, Germany:
Springer-Verlag, 1999, vol. 1604, pp. 346–352.

[3] S. Bakkes, P. Spronck, and E. O. Postma, “TEAM: The team-oriented
evolutionary adaptability mechanism,” in Proc. 3rd Int. Conf. Enter-
tain. Comput., 2004, pp. 273–282.

[4] A. L. V. Coelho, D. Weingaertner, R. R. Gudwin, and I. L. M. Ricarte,
“Emergence of multiagent spatial coordination strategies through arti-
ficial coevolution,” Comput. Graph., vol. 25, pp. 1013–1023, 2001.

[5] N. Cole, S. J. Louis, and C. Miles, “Using a genetic algorithm to tune
first-person shooter bots,” in Proc. Int. Congr. Evol. Comput., 2004,
vol. 1, pp. 139–145.

[6] M. de Weerdt, A. ter Mors, and C. Witteveen, “Multi-agent planning:
An introduction to planning and coordination,” in Proc. Handouts of
the Eur. Agent Summer School, 2005, pp. 1–32.

[7] D. Doherty and C. O’Riordan, “Evolving tactical behaviours for teams
of agents in single player action games,” inProc. 9th Int. Conf. Comput.
Games: AI, Animat., Mobile, Edu. Serious Game., 2006, pp. 121–126.

[8] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computation,
2nd ed. Berlin, Germany: Springer-Verlag, 2007.

[9] S. G. Ficici and J. B. Pollack, “Challenges in coevolutionary learning:
Arms-race dynamics, open-endedness, and mediocre stable states,” in
Proc. 6th Int. Conf. Artif. Life, 1998, pp. 238–247.

[10] K. D. Forbus, J. V. Mahoney, and K. Dill, “How qualitative spatial
reasoning can improve strategy game AIs,” IEEE Intell. Syst., vol. 17,
no. 4, pp. 25–30, 2002.

[11] G. Weiss, Ed., Multiagent Systems: A Modern Approach to Distributed
Artificial Intelligence. Cambridge, MA: MIT Press, 1999.

[12] R. Groß, K. Albrecht, W. Kantschik, andW. Banzhaf, “Evolving chess
playing programs,” in Proc. Genet. Evol. Comput. Conf., 2002, pp.
740–747.

[13] S. J. Johansson, “On using multi-agent systems in playing board
games,” in Proc. 5th Int. Joint Conf. Autonom. Agents Multiagent
Syst., 2006, pp. 569–576.

[14] D. Keaveney and C. O’Riordan, “Analysing the fitness landscape of an
abstract real-time strategy game,” in Proc. 9th Int. Conf. Intell. Games
Simul., 2008, pp. 51–55.

[15] D. Keaveney and C. O’Riordan, Abstract Model of a Real Time
Strategy Game Nat. Univ. Ireland, Galway, Ireland, Tech. Rep.
nuig-it-011008, 2008.

[16] A. Lubberts and R. Miikkulainen, “Co-evolving a Go-playing neural
network,” in Proc. Birds-on-a-Feather Workshop, Genet. Evol.
Comput. Conf., 2001.

[17] C. Miles and S. J. Louis, “Co-evolving real-time strategy game playing
influence map trees with genetic algorithms,” in Proc. Int. Congr. Evol.
Comput., Portland, OR, 2006.

[18] J. Koza, “Genetic evolution and co-evolution of computer programs,”
in Artif. Life II: Proc. Workshop Artif. Life, C. G. Langton, C. Taylor, J.
D. Farmer, and S. Rasmussen, Eds. Reading, MA: Addison-Wesley,
1992, pp. 603–629.

KEAVENEY AND O’RIORDAN: EVOLVING COORDINATION FOR REAL-TIME STRATEGY GAMES 167

David Keaveney received the B.Sc. degree in
physics and astronomy from the National University
of Ireland (NUIG), Galway, Ireland, in 2005.
He is currently a Researcher in the Department of

Information Technology, NUIG. His current research
focuses on cooperation and coordination in multia-
gent systems.

Colm O’Riordan received the B.Sc. and M.Sc. de-
grees in computer science from University College
Cork, Ireland.
He lectures in the Department of Information

Technology, National University of Ireland, Galway,
Ireland. His main research interests are in the
fields of agent-based systems, artificial life, and
information retrieval. His current research focuses
on cooperation and coordination in artificial life
societies and multiagent systems.

