
50 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 1, NO. 1, MARCH 2009

Effects of Shared Perception on the Evolution
of Squad Behaviors

Darren Doherty and Colm O’Riordan

Abstract—As the nonplayable characters (NPCs) of squad-based
shooter computer games share a common goal, they should work
together in teams and display cooperative behaviors that are tac-
tically sound. Our research examines genetic programming (GP)
as a technique to automatically develop effective squad behaviors
for shooter games. GP has been used to evolve teams capable of
defeating a single powerful enemy agent in a number of environ-
ments without the use of any explicit team communication. This
paper is an extension of our paper presented at the 2008 Confer-
ence on Artificial Intelligence and Interactive Digital Entertain-
ment (AIIDE’08). Its aim is to explore the effects of shared percep-
tion on the evolution of effective squad behaviors. Thus, NPCs are
given the ability to explicitly communicate their perceived informa-
tion during evolution. The results show that the explicit communi-
cation of perceived information between team members enables an
improvement in average team effectiveness.

Index Terms—Evolutionary computation, genetic programming,
shooter games, squad behaviors.

I. INTRODUCTION

I N recent years, there has been an emergence of squad-based
shooter games. The AI of the nonplayable characters

(NPCs) of these games should be team-orientated and tactical
as the NPCs should work together to devise the most effective
method to achieve their common goal. As tactics are highly
dependent on the situation (i.e., team supplies, enemy move-
ment, etc.) [2], it is very difficult for developers to code the
tactical team behaviors and decide when and where it would
be effective to use certain tactics. As such, developers find it
difficult to create squads of NPCs that are able to correctly
assess a situation, choose effective courses of action for each
NPC, and work together to achieve their common goal.

Rather than attempting to develop complex behavioral sys-
tems that may allow NPCs to display intelligent squad behavior,
game developers have opted to continue using rudimentary tech-
niques to implement the AI of individual NPCs and use simple
techniques to make it appear as if the NPCs are cooperating in an
intelligent manner. For example, some developers prevent two
NPCs from simultaneously shooting at the player, causing them
to appear to be taking turns attacking. This is combined with
audio cues from the NPCs such as shouting “cover me” when

Manuscript received November 14, 2008; revised January 08, 2009; accepted
March 04, 2009. First published March 24, 2009; current version published May
01, 2009.

The authors are with the Department of Information Technology, Na-
tional University of Ireland Galway, Galway, Ireland (e-mail: darren.do-
herty@nuigalway.ie; colm.oriordan@nuigalway.ie).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCIAIG.2009.2018701

an NPC reloads its weapon to create the illusion of cooperative
behavior. Using “cheating” mechanisms to simulate coopera-
tive behavior has been successful in giving the appearance of
intelligent, cooperative agents. However, using more sophisti-
cated AI to create teams that are actually intelligent and coop-
erative rather than teams that appear so is an important research
question, not only in computer games but also in other domains.
Using sophisticated AI could also create a more challenging
gaming experience as it may allow teams more advanced rea-
soning abilities than current approaches.

We propose that genetic programming (GP) can be used to
evolve effective squad behaviors for shooter games. GP has not
yet been used in commercial computer games and its potential
usage in computer games has not been researched to any ex-
tent in academia. Despite this, GP has been very successful at
evolving team behaviors in a variety of simulated environments
[3]–[9] (see Section II). GP is also considerably flexible as it al-
lows programmers to develop more diverse solutions than those
provided by genetic algorithms (GAs) and an evolved genetic
program is directly interpretable by humans. The goal of this
paper is to show that GP can be used to evolve effective squad
behaviors for shooter games. However, GP could also be used
to create “interesting” or “fun” NPC behaviors by altering the
manner in which fitness scores are evaluated. The level of “fun’
associated with an NPC is a subjective matter and hence the
evaluation could possibly involve human feedback following the
evolution of “fit” solutions. Alternative approaches to evolving
“fun” behaviors would be to constrain the evolution to only gen-
erate solutions that are similar to those identified as interesting
by users. This represents a separate question to the one being ad-
dressed in this paper. We are primarily interested in generating
fit solutions to illustrate the effectiveness of GP in this regard
and to gain a better insight into the complexity of the problem.
The evolution of “fun” behaviors represents, for us, a separate
question which can be more fully tackled once the first question
regarding the evolution of “fit” behaviors has been answered.

In our previous research, GP has been successfully used to
evolve effective teams in shooter environments of varying diffi-
culty [10]. Teams are evolved against a single powerful enemy
agent that can be likened to the human player of a single-player
shooter game. The difficulty of the environment is varied by al-
tering the field of view (FOV) and viewing distance of NPCs. In
modern shooter games, both the NPCs and the human player(s)
have limited visual ranges within which information can be per-
ceived. In [10], the evolved teams could only implicitly com-
municate by observing the positions of other agents. In this
paper, NPCs are given the ability to share perceived informa-
tion in order to explore the effects of perceptual communication

1943-068X/$25.00 © 2009 IEEE

DOHERTY AND O’RIORDAN: EFFECTS OF SHARED PERCEPTION ON THE EVOLUTION OF SQUAD BEHAVIORS 51

on the evolution of effective squad behaviors. In order to com-
pare teams evolved with perceptual communication to teams
evolved without perceptual communication, the gaming envi-
ronments and genetic program used in this research are identical
to those used in [10]. We hypothesize that explicit communica-
tion should allow the NPCs to perceive the environment as a
team rather than individually, which should result in more ef-
fective emergent squad behaviors.

II. RELATED WORK

With the emergence of squad-based shooter games, devel-
opers have struggled to create systems that allow teams of NPCs
to display effective squad behaviors. As such, developers have
opted to use simple techniques to create the illusion of coopera-
tion among the NPCs. Command hierarchies [11] and cognitive
architectures [12] have both been proposed as methods to im-
plement squad AI for shooter games. Decentralized approaches
[13] where the team behavior emerges from interactions of team
members and centralized approaches [14] where a team leader
makes the decisions have also been suggested. However, there
is no consensus on which approach is best and all require a con-
siderable amount of time and effort to design and implement.
Although our proposed GP approach also takes time to initially
setup, once implemented, it can potentially be used to create
squad behaviors to perform numerous tactics in a range of dif-
ferent environments.

Evolutionary computation (EC) techniques have not been
used extensively in the exploration and research of AI for com-
puter games. As the environments and range of NPC behaviors
in a computer game are generally very complex, developers are
hesitant to introduce EC techniques into their games as there is
no guarantee desirable behaviors will be found. EC techniques
are more suited to offline game AI development (i.e., during
game development) as opposed to online (i.e., evolving while
the game is being played to allow the NPCs to adapt in real
time) as they are very resource intensive and can take a long
time to produce solutions. The research community has begun
to realize the potential of EC techniques as developmental tools
for game AI. Champandard [15] used a GA to successfully
evolve NPCs in a first-person shooter game to dodge enemy
fire. Ponsen [16] used a GA to successfully design tactics for a
real-time strategy (RTS) game and Cole et al. [17] used a GA
to tune an NPC’s weapon selection parameters for a shooter
game. In addition, GP has been used to evolve behaviors for
simple computer games, such as PacMan [18], Tic-Tac-Toe
[19], Tetris [20], and Snake [21].

A few attempts have been made at evolving teams for shooter
games [22], [23]. The first system [22] uses neuroevolution to
evolve teams but requires a human player to specify which at-
tributes are to be evolved, and the second mechanism [23] uses
an adapted GA representation that requires a number of game-
specific enhancements to the GA paradigm. Both techniques
have been used to successfully evolve squad behaviors. How-
ever, neither technique is ideal for developers to use to create
squad behaviors for NPCs. In both cases, the team’s behavior is
evolved in an adaptive manner, while the game is being played,
so developers cannot tell or test, in advance, what behaviors the

NPCs will exhibit or how tactically proficient they will be. On-
line reinforcement learning (RL) techniques have also been sug-
gested to allow squads in shooter games to adapt [24], [25]. As
EC techniques are more suited to offline AI development, our
research is concerned with offline evolution rather than online
adaptation of team behaviors.

GP has been successfully used to simulate team evolution in
a number of different simulated domains. GP was first applied
to team evolution by Haynes et al. [26]. With respect to team
evolution, GP has been mainly used to solve multiagent control
problems using teams of cooperating agents. Pursuit strategies
for predator–prey domains have been successfully evolved using
GP techniques [3], [4]. Haynes et al. [3] used a strongly typed ge-
netic program [27] to evolve a team of predators to hunt a single
prey and Luke and Spector [4] used GP to successfully evolve
predator strategies that enable a group of lions to successfully
hunt faster moving gazelle across a toroidal, continuous 2-D
landscape. In Luke’s work, heterogeneous teams are shown to
perform better than homogeneous teams. In addition, Reynolds
used GP to evolve prey that exhibit a herding behavior when
confronted by predators [5]. GP has also been used to enable a
team of ants to work together to solve a food collection problem
[6]. The ants must not only cooperate in order to reach the food
but must also work together to carry it as it is too heavy for one
ant to carry alone. Richards et al. [7] used a genetic program to
evolve groups of unmanned air vehicles to effectively search an
uncertain and/or hostile environment. Their environments were
relatively complex, consisting of hostile enemies, irregular
shaped search areas, and no-fly zones. In addition, GP has been
used to successfully evolve sporting strategies for teams of
volleyball players [8] and teams of soccer players [9].

It has been argued that communication is a necessary pre-
requisite to teamwork [12] and plays a key role in facilitating
multiagent coordination in cooperative and uncertain domains
[28]. Moreover, in a study conducted by Barlow et al. [29] on
teamwork in shooter games, it was found that communication is
one of the three main factors that contribute to a team’s success,
together with role assignment and coordination.

III. GAMING ENVIRONMENT

The environment is a 2-D space, enclosed by four walls and
is built using the Raven game engine1 [30, ch. 7]. Items are
placed on the map at locations equidistant from both the team
and enemy starting points. These items consist of health packs
and a range of weapons that respawn after a set time if collected
(see Fig. 1).

Both types of agent (i.e., team agent and enemy agent) use the
same underlying goal-driven architecture [30, ch. 9] to define
their behavior. The goal-driven architecture uses a hierarchy of
goals in which composite goals are broken down into subgoals.
Goals are satisfied consecutively so the current goal (and any
subgoals of it) is satisfied before the next goal is evaluated. If
an NPC’s situation changes, a new, more desirable goal can be
placed at the front of the goal queue. Once this goal is satisfied,
the NPC can continue pursuing its original goal. Although the

1The Raven game engine source code can be downloaded from http://www.
wordware.com/files/ai/Buckland_AISource.zip

52 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 1, NO. 1, MARCH 2009

Fig. 1. Environment map.

underlying goal architecture is the same, team agents use a
decision-making tree evolved using GP to decide which goal to
pursue, whereas the enemy uses desirability algorithms asso-
ciated with each goal. These desirability algorithms are hand-
coded to give the enemy intelligent reasoning abilities. Random
biases are used when creating these desirability algorithms, in
order to vary the enemy’s behavior from game to game. These
desirability algorithms coupled with the random biases define a
range of rational and intelligent decision-making abilities that
mimic how a human might behave when playing the game. A
detailed description of the desirability algorithms is given in [10].

The team consists of five agents each of which begins the
game with the weakest weapon in the environment. The enemy
agent has five times the health of a team agent and begins the
game with the strongest weapon with unlimited ammunition.
Both types of agent have a memory allowing them to remember
information they perceive. Any dynamic information, such as
team or enemy positions, is forgotten after a specified time. All
agents have limited visual and auditory ranges within which
they can perceive information in their environment. An agent’s
visual capability is defined by their FOV and viewing distance.
For these experiments, the enemy can see twice as far as team
agents but the FOVs of both agent types are equal. Auditory
ranges are the same for all agents. If more than one team agent
has been recently sensed by the enemy, the enemy will select
its target based on distance. Weapons have different firing fre-
quencies and ideal ranges within which they are more effective
and bullets have different properties, such as velocity, spread,
damage, etc.

IV. THE GENETIC PROGRAM

The genetic program structure, GP nodes, and GP operators
used in these experiments are identical to those used in [10] so
that the results can be compared. A complete list of GP nodes,
together with parameters used in the evolution can be found on
IEEE Xplore. In our genetic program, the entire team of five
NPCs is viewed as one chromosome, so team fitness, crossover,
and mutation operators are applied to the team as a whole. Each
agent is derived from a different part of the chromosome, so
evolved teams are heterogeneous (see Fig. 2).

A strongly typed genetic program is used so as to constrain
the type of nodes that can be children of other nodes. In strongly
typed GP [27], the initialization process and genetic operators
must only allow syntactically correct trees to be produced.
There are five types of node and a total of 50 nodes used in the
evolution.

• Action nodes represent goals the agent can pursue and the
IF statement.

• Condition nodes represent conditions under which goals
are to be pursued.

• Position nodes represent positions on the map (relative to
other agents) to which the agents can move

• Environment nodes represent gaming parameters that are
checked during the agent’s decision making process (e.g.,
ammunition supplies).

• Number nodes represent arithmetic operators and con-
stants.

Note that the IF node has an arity of three. The first child
node is a condition node which evaluates to true or false. If

DOHERTY AND O’RIORDAN: EFFECTS OF SHARED PERCEPTION ON THE EVOLUTION OF SQUAD BEHAVIORS 53

Fig. 2. Sample evolved GP chromosome.

true, the second branch is followed, otherwise the third branch is
followed. These branches contain nodes representing goals the
agent should pursue or further IF nodes (see Fig. 2).

A. Fitness Calculation

The fitness function takes into account the games’ duration
and the remaining health of the enemy and team agents

where is the average duration of the games,
reduces the impact that game time has on fitness (set to

four), is the maximum game length (i.e., 5000
game updates), and are the amount of health remaining
for the enemy and for all five team agents, respectively, is
a weight that gives more importance to (five), is the
number of games per evaluation (i.e., 20), is the team size
(i.e., five), and is the maximum health of a team
agent (i.e., 50).

The team’s fitness is then standardized such that values closer
to zero are better and the length of the chromosome is taken into
account to prevent bloat

where is the maximum value can hold,
is the length of the chromosome, and is

a constant used to limit the influence has on fitness (set
to 5000).

B. Selection

There are two forms of selection used. The first is a form of
elitism where copies of the best chromosomes from each
generation are copied directly into the next generation. Three
copies of the best and two copies of the next best individual are
retained in this manner. The second method is roulette wheel
selection. Any chromosomes selected in this manner are sub-
jected to crossover and mutation (given probabilities of 0.8 and

0.1, respectively). To increase genetic diversity, there is also a
2% chance for new chromosomes to be created and added to the
population each generation.

C. Crossover

The crossover operator is specifically designed for team evo-
lution [31]. At the start of each crossover operation, a random

bit mask is selected that decides which of the agents in the
parent chromosomes are to be altered during crossover. A “1”
in the mask indicates that the agent at that position is copied di-
rectly into the child and a “0” indicates the agent is to take part
in crossover with the corresponding agent of the other parent
(see Fig. 3). A random crossover point is then chosen within
each agent to be crossed over. The node at the crossover point
in each corresponding agent must be of the same node type in
order for the crossover to be valid.

D. Mutation

Two forms of mutation are used in these experiments, one to
allow good subtrees to spread within a team and the other to
help maintain diversity in the population. The former mutation
method, known as intrateam mutation, randomly chooses two
agent trees from the same team chromosome and swaps two ran-
domly selected subtrees between the agents (see Fig. 4). Similar
to the crossover operation, the root nodes of the subtrees must be
of the same node type for the mutation to be valid. The second
form of mutation, known as swap mutation, randomly selects a
subtree from the chromosome and replaces it with a newly cre-
ated random tree (see Fig. 5).

V. PHENOTYPIC ANALYSIS

The phenotypic analysis technique used in this work is based
on our earlier approach to phenotype analysis presented in [32].
In order to analyze the phenotypes of evolved team chromo-
somes, we first define a method to capture the behavioral in-
formation of each team agent from the gaming environment.
Our phenotypic analysis technique uses this behavioral infor-
mation to determine the behavioral characteristics each agent
on the team is displaying. These behavioral characteristics are

54 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 1, NO. 1, MARCH 2009

Fig. 3. Sample crossover operation between two team chromosomes.

Fig. 4. Sample intrateam mutation operation between two team agents.

Fig. 5. Sample swap mutation operation.

DOHERTY AND O’RIORDAN: EFFECTS OF SHARED PERCEPTION ON THE EVOLUTION OF SQUAD BEHAVIORS 55

TABLE I
BEHAVIORAL INFORMATION CAPTURED FOR TEAM AGENT

encapsulated in a number of different agent types that have been
identified arbitrarily from observation. In this work, we use our
phenotypic analysis method to compare and contrast the behav-
iors of teams evolved without communication to those evolved
with communication in order to ascertain whether the evolved
behaviors are different.

A. Capturing Behavioral Information

The first step in our phenotypic analysis approach is to specify
a method for formally capturing each team agent’s behavioral
information from the gaming environment. To accomplish this,
1000 games are simulated for each team in which periodic snap-
shots of the team agents’ game state are taken. These snapshots
are taken every game updates until either the game has ended
or the team agent has been killed by the enemy. As this work is
not concerned with the temporal analysis of agent behavior, all
snapshots are accumulated into a single record describing the
agent’s behavior over the entire game. A sample record can be
seen in Table I.

Each record holds information on the amount of damage in-
flicted on the enemy using each weapon, the average health
of the agent, the average distances to other teammates and the
enemy over the course of the game, the number of times the
agent was the target of the enemy, the lifetime of the agent, the
game length, and a Boolean value indicating whether the agent
survived the game. One record is obtained per agent for each of
the 1000 games played. These are later used to classify the team
agents into specific agent types.

B. Classifying Agent Types

Agent types are identified that encapsulate the different be-
haviors that each agent can display in the game. Although these
agent types are arbitrarily chosen from observation, they are
deemed sufficient for the environments being examined in this
paper. These types include: decoys, rocket attackers, shotgun at-
tackers, railgun attackers, blaster attackers, evaders, health pre-
servers, and cohesive agents. Each type has specific behavioral
traits but types are not mutually exclusive. The agent types have
associated degree of membership (DOM) algorithms that are

used to calculate the DOM each agent has to every agent type
by analyzing the captured behavioral information of that agent.
The DOM algorithms used in this work have been revised and
improved upon the ones used in previous research [32] to give
more accurate classification of agent types. For a detailed ex-
planation of the agent types and DOM algorithms used, see the
Appendix.

The values returned from the DOM algorithms are used to
calculate probability scores for each team agent that indicate
how likely their behavior describes each type according to the
following function:

where and are constant values and is the original
value returned from a DOM calculation.

The probabilities of each agent being a particular type are cal-
culated for each of the 1000 games and the results are averaged
to obtain a vector of probabilities describing an agent’s behav-
ioral characteristics. This is carried out for each team agent re-
sulting in five probability vectors that, when combined, describe
the behavior of the team as a whole.

C. Comparing Squad Behaviors

When these probability scores have been calculated for every
team agent, they are combined into a single team vector de-
scribing the overall team’s behavior. In order to model different
levels of membership to different role types, we subdivide the
interval into five intervals of equal size, where the first
interval represents low membership to that particular
class and represents a high level of membership to
the particular class. We aggregate the scores indicating mem-
bership to these classes for each individual member to give an
overall team vector. This team vector is represented by a four-
tuple indicating the count of the number of members in each of
the four classes indicating membership (note that we interpret
the lowest range as nonmembership to the class and hence the
count of membership to this class is omitted in our represen-
tation). Hence, when all agents have been added to the team
vector, each class corresponds to the number of agents with
weak, fair, strong, and very strong memberships to that type on
the team. This technique for combining the agent vectors into
a single team vector gives us a more accurate representation of
the squad’s behavior than the threshold method used in [32] by
minimizing the amount of information lost. The team vectors
are then put into a decision tree algorithm to be analyzed.

VI. EXPERIMENTAL SETUP

In order to explore the effects of communication on the evo-
lution of squad behaviors, the environments, genetic program,
and game parameters used for these experiments are identical to
those used in previous work [10], in which teams were evolved
without the use of explicit communication. In [10], teams have
been evolved in eight shooter environments of varying diffi-
culty. As there was no explicit communication, teams evolved
to cooperate implicitly. It was found that the effectiveness of
evolved teams decreases significantly as the environments be-
come more difficult.

56 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 1, NO. 1, MARCH 2009

Fig. 6. Sharing perceived information with teammates.

The only difference between these experiments and those
of previous research is that in these experiments NPCs are
given the ability to share perceived information as the games
are played. As game information is sensed by an NPC, it is
broadcast by the NPC to each of its teammates in the form of
messages. Each of the teammates then receives the message
and stores the information in memory. Types of information
that can be exchanged between teammates include the location
of health and ammunition packs as well as the enemy’s current
position. A visualization of an agent informing teammates of
the location of shotgun ammunition is shown in Fig. 6. In a
commercial shooter game, audio cues could be used with this
communication to enhance gameplay. For example, when the
enemy is located, an NPC might say “enemy spotted at location
X” as it passes the message to its teammates. We hypothesize
that this sharing of game information between team members
should allow the NPCs to perceive the environment as a team
rather than individually and that this should result in more
effective emergent squad behaviors. In the remainder of this
paper, teams evolved in [10] will be referred to as noncommu-
nicating teams and those evolved in this work that communicate
perceived information will be referred to as communicating
teams.

The difficulty of the environment is varied by altering the
agents’ visual perception capabilities. Experiments are set up
for two fields of view (90 and 180) and four viewing distances
(50, 200, 350, and 500 pixels) so a total of eight experiments
are conducted. The enemy viewing distance is scaled relative to
the viewing distance of the team NPCs. As there are five team
agents and only the one enemy agent, the collective viewing
range of the team covers a much larger portion of the map than
that of a single agent. Additionally, the human player in single-
player shooter games, to which the enemy is likened, usually has
a much longer viewing distance than that of the NPCs. For these
reasons, it was decided to allow the enemy’s viewing distance
to be twice that of a team agent. Fig. 7 show the environments
where the FOV is 90 .

Twenty separate evolutionary runs are performed in each of
the eight environments. In each of the runs, 100 team chromo-

somes are evolved over 100 generations. Each team evaluation
in each generation comprises 20 games. The best performing
team from each of the runs is recorded.

As the enemy’s behavior varies from game to game, due to
the random biases in its desirability algorithms, each recorded
team is tested more extensively using a larger number of games
to obtain an accurate measure of its effectiveness. The effective-
ness tests involve evaluating each recorded team’s performance
over 1000 games and recording the number of games won by
the team out of the 1000. These results are then compared to
previous results and statistical tests are performed to determine
if communication provides a significant benefit to the evolution
of effective squad behaviors.

A baseline of 100 generic team behaviors is also created and
assessed in each environment to help put the effectiveness of
the evolved teams in perspective. These generic teams consist of
agents that use desirability algorithms to define their AI (similar
to the enemy agent). In order to create 100 distinct behaviors,
teams are split up into a group of three and a group of two. Each
group then is given a fixed set of biases for each of its desirability
algorithms where two of the biases are set high (1.5) and three
set low (0.5). As there are ten ways of choosing two desirability
algorithms for high biases from five possible desirability algo-
rithms for each group and as there are two groups of agents on
a team, 100 distinct teams can be created from all combinations
of the two groups. Note that there are six desirability algorithms
but the Explore desirability is set to a constant low number and
is not given an associated bias.

As mentioned previously, a phenotypic analysis is performed
in order to determine if the behaviors of teams evolved with
communication are different than those evolved without com-
munication. As mentioned in Section V-C, each evolved team’s
behavior is described by a vector of numbers. In order to com-
pare the behaviors of communicating teams to the behaviors
of noncommunicating teams, each team vector must be labeled
according to its type, i.e., “communicating” or “noncommuni-
cating.” It is this type label that is used as the target variable of
the decision tree so that the decision tree can attempt to distin-
guish between the behaviors of teams evolved with communi-

DOHERTY AND O’RIORDAN: EFFECTS OF SHARED PERCEPTION ON THE EVOLUTION OF SQUAD BEHAVIORS 57

Fig. 7. Environments where FOV is 90 .

cation and those evolved without communication. We use ten-
fold cross validation for our decision tree analysis to give more
accurate results as our data sets are relatively small (size 40).
The higher the degree of misclassification within the tree, the
more similar the behaviors are of the communicating and non-
communicating teams. If all behaviors are notably different, the
decision tree should be able to classify them such that the leaf
nodes of the tree have no misclassification, i.e., there are no
teams evolved with perceptual communication that have similar
behavioral traits to those evolved without perceptual communi-
cation. The path from the root node to a leaf should reveal the
behavioral traits that are common to the teams grouped in that
leaf.

As mentioned earlier, this paper is not concerned with per-
forming a temporal analysis of the squad behaviors. Games
cannot be split into an equal number of fixed length periods for
comparison as game length is variable and agents have varying
life spans2 within each game so it is very difficult to compare
teams on a temporal basis. If teams were to be compared on a
temporal basis using our current approach, it would add greatly
to the complexity of the team vectors making it more difficult
to interpret and analyze the resulting decision tree.

VII. RESULTS

Fig. 10 tracks the average and best fitness scores from two
sample evolutionary runs to show how fitness changes over time
(note that values closer to zero are better). From the graph, we
can see that the average and best fitnesses from each run improve

2In some teams, all agents may survive the game, whereas in another team,
two or three of the agents might get eliminated early in the game.

between the initial and final generations. The spikes in the graph
denote a sharp change in fitness between generations, which re-
sult from variances in the enemy’s behavior during each team
evaluation as random biases are used for its desirability algo-
rithms. These spikes tend to be less prominent in the later gen-
erations as the genetic program begins to converge on a good
solution.

Fig. 8(a) and (b) shows the number of wins obtained by
the most effective generic team and the most effective teams
evolved with communication and without communication in
the 90 and 180 FOV environments, respectively. The results
show that the best evolved communicating and noncommu-
nicating teams outperform the best generic team in the least
difficult environments. In both sets of environments, the results
show that communication causes an improvement in the most
effective teams evolved in all environments except the least
difficult environment. In the least difficult environments, the
results for the best evolved communicating and noncommu-
nicating teams are almost even, differing by only seven wins
in the 90 FOV environment and four wins in the 180 FOV
environment. We believe that communication does not benefit
the teams in these environments as the individual NPCs can
view the majority of the map by themselves and do not need
their teammates to communicate the game information.

As the environments in Fig. 8(a) and (b) become increas-
ingly more difficult, the percentage improvement in the effec-
tiveness of the best teams evolved with communication over
those without communication also increases. In general, per-
ceptual communication seems to benefit the teams more as the
viewing distance decreases. This is justifiable as team agents

58 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 1, NO. 1, MARCH 2009

Fig. 8. Comparison of maximum wins. (a) FOV 90 . (b) FOV 180 .

Fig. 9. Comparison of average wins. (a) FOV 90 . (b) FOV 180 .

Fig. 10. Graph of the average and best team fitness from each generation.

with more restricted perceptual ranges would find it more diffi-
cult to locate specific game objects on their own, and thus should
benefit more from sharing of game information.

Fig. 9(a) and (b) shows the average number of wins obtained
by 100 generic teams, 20 evolved communicating teams, and
20 evolved noncommunicating teams in the 90 and 180 FOV

TABLE II
P-VALUES OF SIGNIFICANCE T-TESTS BETWEEN TEAMS EVOLVED WITH

COMMUNICATION AND WITHOUT COMMUNICATION

environments, respectively. The results demonstrate that the
average effectiveness of the evolved communicating teams is
higher than the average effectiveness of the generic teams in all
environments, showing that the GP gives a strong result. Similar
to Fig. 8(a) and (b), excluding the least difficult environments,
the results show an increase in the percentage improvement
in average team effectiveness in those teams evolved with
communication over those without communication as the
environments become more difficult.

To test the significance of the results, T-tests have been per-
formed between the evolved communicating and noncommu-
nicating teams in each of the environments (see Table II). For
a confidence interval of 95%, any comparison that records a
p-value below 0.05 shows a statistically significant difference
in the two samples. The results displayed in Fig. 9(a) show that

DOHERTY AND O’RIORDAN: EFFECTS OF SHARED PERCEPTION ON THE EVOLUTION OF SQUAD BEHAVIORS 59

Fig. 11. Comparison of team behaviors (FOV 90 , viewing distance 50).

communication affords an improvement in the average effec-
tiveness in all environments where the FOV is 90 . This im-
provement in performance is statistically significant for the 50-
and 200-pixel environments (with p-values ; see Table II)
but is not significant for the 350- and 500-pixel environment
(p-values of 0.05 and 0.95, respectively). In Fig. 9(b), the im-
provement in team effectiveness is only statistically significant
in the 50-pixel environment. In addition, the use of communica-
tion causes a disimprovement in effectiveness in the 500-pixel
environment but it is not significant.

Table II shows that in the 200-pixel environment the results
are statistically different when the FOV is 90 (p-value)
but not when the FOV is 180 (p-value of 0.30). Similarly, the
low p-value (0.05) recorded in the 350-pixel environment where
the FOV is 90 indicates that the results are very different but in
the corresponding FOV 180 environment the results are sim-
ilar (p-value of 0.61). This may because the enemy’s FOV is
also more restricted in the 90 FOV environments making it
more difficult for the enemy to spot team agents attacking from
the sides. This may also explain why the generic teams and
some of the evolved teams tend to perform better in the FOV
90 environments than in their FOV 180 counterparts. Hence,
communication between team members may provide the team
with opportunity to attack more effectively. Additionally, the
visual range of NPCs in shooter games is usually cone shaped,
meaning their FOV is closer to 90 than 180 .

The results of our phenotypic analysis experiments show that
there is a correlation between the difficulty of the environment
and the difference in the behaviors of evolved communicating
teams and evolved noncommunicating teams. Fig. 11 displays
the resulting classification tree for teams evolved in the envi-
ronment where FOV is 90 and viewing distance is 50. In this
environment, the decision tree is able to distinguish all com-
municating teams from all noncommunicating teams in just one
level of the tree. Moreover, Fig. 11 shows that the decision tree

is capable of performing this classification within the first level
of the decision tree using any one of four different agent type
variables. This implies that the behaviors of the communicating
teams are very different from the behaviors of the noncommuni-
cating teams. More specifically, the communicating teams con-
tain more agents with a higher probability of being blaster at-
tackers, and a lower probability of being decoys, evaders, and
health preservers than the noncommunicating teams. The im-
proved performance of the communicating teams in this envi-
ronment may be attributed to the greater number of higher prob-
ability blaster attackers on the team. The communicating teams
have a more aggressive behavior than the noncommunicating
teams, which is also reflected in their lessened ability to pre-
serve their health effectively or evade the enemy. In addition,
these teams contain fewer decoys which means that there are
fewer ineffective,3 self-sacrificing agents on these teams. From
observation of the teams’ behavior in this environment, it can be
seen that the ability to communicate the position of the enemy
enables the team members to attack the enemy simultaneously.
Typically, the communicating teams evolved in this environ-
ment do not tend to collect ammunition for stronger weapons
but instead approach and attack the enemy in unison when the
enemy is spotted by a team member. This observed behavior re-
inforces the classification trees finding that the communicating
teams contain agents with a higher probability of being blaster
attackers and a lower probability of being decoys than the non-
communicating teams in this environment. The fact that agents
approach the enemy as they attack also suggests that they do not
attempt to evade the enemy and have little regard for their own
health. A similar result is observed in the environment with cor-
responding viewing distance and FOV 180 .

In a contrasting example, the behaviors of both communi-
cating and noncommunicating teams evolved in the environ-

3Decoys are only effective if the attacking agents on the team can take advan-
tage of the distraction caused by the decoys.

60 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 1, NO. 1, MARCH 2009

Fig. 12. Comparison of team behaviors (FOV 90 , viewing distance 500).

ment where agents have a FOV of 90 and viewing distance of
500 are found to be somewhat similar. The resulting classifica-
tion tree for the teams evolved in this environment is shown in
Fig. 12.

Only four communicating teams are classified in the first level
of the trees and a further two teams are classified in each of the
second and third levels of the tree. By the fourth level of the de-
cision tree there are still 12 communicating teams that cannot
be distinguished from noncommunicating teams based on their
behavior as the leaf nodes at this level of the tree have misclas-
sifications of 20% and 47%. This implies that the behaviors of
communicating teams and noncommunicating teams contained
at this level of the tree are similar. Both communicating and non-
communicating teams at this level of the tree contain at least one
agent with a fair probability of being a railgun attacker, less than
two agents with very strong probabilities of being decoy agents,
and no rocket attackers. In this environment, only six teams are
successfully classified within four levels of the decision tree,
which would imply that the behaviors of communicating and
noncommunicating teams are very similar. A similar result can
be observed in the classification tree for the environment where
FOV is 180 and viewing distance is 500. Typically, in these en-
vironments, the observed behavior of both communicating and
noncommunicating teams is for one or two agents to distract
the enemy (i.e., act as decoys), while the other team members

collect ammunition for the stronger weapons before attacking
the enemy simultaneously. Perceptual communication does not
provide as much variation in team behavior in this environment
as each individual agent’s viewing range covers a much larger
area and communication is not required to the same extent as in
other environments.

The classification trees for the remaining more difficult en-
vironments (i.e., FOV 180 and viewing distance 50, FOV 90
and viewing distance 200, and FOV 180 and viewing distance
200) show that the decision tree is capable of distinguishing the
behavior of all communicating teams from the behavior of all
noncommunicating teams with no misclassification. In contrast,
the classification trees for the less difficult environments, where
FOV is 90 and viewing distance 350, FOV 180 and viewing
distance 350, and FOV 180 and viewing distance 500, show
some degree of misclassification, which implies that the deci-
sion trees are not capable of distinguishing between all the com-
municating and noncommunicating team behaviors.

VIII. CONCLUSION AND FUTURE WORK

This paper explores the effects of shared perception on the
evolution of squad behaviors for NPCs in shooter games. The re-
sults show that perceptual communication between team mem-
bers enables an improvement in average team effectiveness in

DOHERTY AND O’RIORDAN: EFFECTS OF SHARED PERCEPTION ON THE EVOLUTION OF SQUAD BEHAVIORS 61

all environments except the least difficult one. In the least dif-
ficult environment, individual NPCs can view the vast majority
of the map by themselves and communication is not needed to
inform them of key game information. In addition, the decrease
in average team effectiveness when using communication is not
statistically significant. In contrast, teams evolved in the more
difficult environments, where NPC viewing ranges are most re-
stricted, were shown to have a significant improvement in effec-
tiveness when perceptual communication was used. The sharing
of information by the team saves the NPCs having to explore the
environment individually. On average, the evolved communi-
cating teams are also shown to outperform hand-coded generic
teams in all environments. Despite achieving a significant im-
provement in effectiveness in the most difficult environments,
the evolved teams still only obtain win percentages averaging
11.9% and 2.5% in comparison to those achieved in the least
difficult, which averaged 67% and 70% for FOVs 90 and 180 ,
respectively.

The current experiments show that as agents’ visual fields be-
come larger, the need for communication is reduced. This is
because the only information being communicated is percep-
tual information. As an agent’s own visual field becomes large,
there is less of a need for teammates to inform them of the lo-
cations of game objects as they can more easily find the loca-
tions of objects themselves. This is reinforced by the finding
that the behaviors of evolved communicating and noncommu-
nicating teams are found to be more similar in environments
where agents have larger visual fields. We hypothesize that in-
formation other than perceived game information which can be
communicated among the agents, such as tactical commands,
may be more important and may be unaffected by the broad-
ening of visual fields.

In future, we wish to continue our research on the role of
communication in facilitating teamwork by evolving behaviors
on different types of map. Additionally, we wish to add com-
munication nodes into the genetic program in an attempt to di-
rectly evolve effective tactical communication between the team
members.

APPENDIX

Decoys are agents who deter enemy fire from their team-
mates. A decoy is classified by the average distance to the enemy
over the agent’s lifetime, the average distance to all of its allies
over the agent’s lifetime, and the number of times the enemy tar-
gets the agent as a fraction of the agent’s lifetime. The number
of times an agent is targeted is given a higher weight as it is a
better indicator

Attackers are agents who consistently attack the enemy
throughout the game. We define four different types of at-
tacking agents, one for each weapon type. To find an attacker
probability, the damage inflicted by the agent on the enemy
over the agent’s lifetime is calculated, taking into account

the damage caused by a single round of ammunition for that
weapon and the weapon’s firing frequency

Evaders are agents who try to keep their distance from the
enemy agent to avoid getting killed. An evader’s DOM score
is based on average distance that the agent is away from the
enemy over the lifetime of the agent. The larger this distance,
the more likely it is that the agent is an evader. If the agent does
not survive the game, it is penalized according to how short a
life span it has

where the second term is the penalty incurred if the agent is
killed and is a constant (set to 30).

Health Preservers are agents capable of surviving the game
and they have a high average health level over their lifetime.
If the agent survives the game its health preserver score is cal-
culated as its average health over the game as a fraction of its
maximum health. If the agent does not survive the game it is
penalized according to how short a life span it has

where the second term is the penalty incurred if the agent is
killed and is a constant (set to 30).

Cohesive agents are agents who stay close to at least one of
their teammates during the course of their lifetime. The average
distance from the agent to its nearest teammate is checked to see
if it is within some arbitrarily chosen distance

ACKNOWLEDGMENT

The authors would like to thank the Irish Research Council
for Science, Engineering and Technology for their assistance
through the Embark initiative.

REFERENCES

[1] D. Doherty and C. O’Riordan, “Effects of communication on the evo-
lution of squad behaviours,” in Proc. 4th Conf. Artif. Intell. Interactive
Digit. Entertain., Palo Alto, CA, 2008, pp. 30–35.

[2] C. Thurau, C. Bauckhage, and G. Sagerer, “Imitation learning at all
levels of game-AI,” in Proc. 5th Int. Conf. Comput. Games, Artif. In-
tell., Design Educat., 2004, pp. 402–408.

[3] T. Haynes and S. Sen, “Evolving behavioral strategies in predators and
prey,” in Proc. Int. Joint Conf. Artif. Intell./Workshop Adapt. Learn.
Multiagent Syst., S. Sen, Ed., Montreal, QC, Canada, 1995, pp. 32–37.

[4] S. Luke and L. Spector, “Evolving teamwork and coordination with
genetic programming,” in Proc. 1st Annu. Conf. Genetic Programm., J.
R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo, Eds., 1996, pp.
150–156.

62 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 1, NO. 1, MARCH 2009

[5] C. W. Reynolds, “An evolved, vision-based behavioral model of coor-
dinated group motion,” in Proc. 2nd Int. Conf. From Animals to Ani-
mats 2: Simulat. Adapt. Behavior, Cambridge, MA, 1993, pp. 384–392.

[6] M. LaLena, “Teamwork in genetic programming,” M.S. thesis, School
Comput. Sci. Technol., Rochester Inst. Technol., Rochester, NY, 1997.

[7] M. D. Richards, D. Whitley, J. R. Beveridge, T. Mytkowicz, D.
Nguyen, and D. Rome, “Evolving cooperative strategies for UAV
teams,” in Proc. 7th Annu. Conf. Genetic Evol. Comput., New York,
2005, pp. 1721–1728.

[8] S. Raik and B. Durnota, “The evolution of sporting strategies,” in Com-
plex Systems: Mechanisms of Adaption, R. J. Stonier and X. H. Yu,
Eds. Amsterdam, The Netherlands: IOS Press, 1994, pp. 85–92.

[9] S. Luke, C. Hohn, J. Farris, G. Jackson, and J. Hendler, “Co-evolving
soccer softbot team coordination with genetic programming,” in Proc.
Int. Joint Conf. Artif. Intell./1st Int. Workshop RoboCup, Nagoya,
Japan, 1997, pp. 398–411.

[10] D. Doherty and C. O’Riordan, “Evolving team behaviours in envi-
ronments of varying difficulty,” Artif. Intell. Rev., vol. 27, no. 4, pp.
223–244, 2007.

[11] J. Reynolds, “Tactical team AI using a command hierarchy,” in AI
Game Programming Wisdom. Hingham, MA: Charles River Media,
2002, pp. 260–271.

[12] B. J. Best and C. Lebiere, “Spatial plans, communication and teamwork
in synthetic MOUT agents,” in Proc. 12th Conf. Behavior Represent.
Model. Simulat., 2003.

[13] W. Van Der Sterren, “Squad tactics: Team AI and emergent maneu-
vers,” in AI Game Programming Wisdom. Hingham, MA: Charles
River Media, 2002, pp. 233–246.

[14] W. Van Der Sterren, “Squad tactics: Planned maneuvers,” in AI Game
Programming Wisdom. Hingham, MA: Charles River Media, 2002,
pp. 247–259.

[15] A. J. Champandard, AI Game Development: Synthetic Creatures With
Learning and Reactive Behaviors. Berkeley, CA: New Riders, 2004.

[16] M. Ponsen, “Improving adaptive game-AI with evolutionary learning,”
M.S. thesis, Faculty Media Knowl. Eng., Delft Univ. Technol., Delft,
The Netherlands, 2004.

[17] N. Cole, S. Louis, and C. Miles, “Using a genetic algorithm to tune
first-person shooter bots,” in Proc. Congr. Evol. Comput., 2004, vol. 1,
pp. 139–145.

[18] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA: MIT Press, 1992.

[19] P. J. Angeline and J. B. Pollack, “Competitive environments evolve
better solutions for complex tasks,” in Proc. 5th Int. Conf. Genetic Al-
gorithms, San Francisco, CA, 1993, pp. 264–270.

[20] E. V. Siegel and A. D. Chaffee, “Genetically optimizing the speed of
programs evolved to play tetris,” Adv. Genetic Programm., vol. 2, pp.
279–298, 1996.

[21] T. Ehlis, “Application of genetic programming to the “snake game”,”
Gamedev. Net, vol. 1, no. 175, 2000.

[22] K. O. Stanley, B. D. Bryant, and R. Miikkulainen, “Evolving neural
network agents in the nero video game,” in Proc. IEEE Symp. Comput.
Intell. Games, 2005, pp. 182–189.

[23] S. Bakkes, P. Spronck, and E. O. Postma, “Team: The team-oriented
evolutionary adaptability mechanism,” in Proceedings of the Third In-
ternational Conference on Entertainment Computing (ICEC 2004), ser.
Lecture Notes in Computer Science, M. Rauterberg, Ed. Berlin, Ger-
many: Springer-Verlag, 2004, vol. 3166, pp. 273–282.

[24] M. Smith, S. Lee-Urban, and H. M. noz Avila, “Retaliate: Learning
winning policies in first-person shooter games,” in Proc. 3rd Int. Conf.
Artif. Intell. Interactive Dig. Entertain., J. Schaeffer and M. Mateas,
Eds., 2007, pp. 1801–1806.

[25] S. Lee-Urban, M. Smith, and H. M. noz Avila, “Learning winning
policies in team-based first-person shooter games,” in AI Game Pro-
gramming Wisdom 4. Hingham, MA: Charles River Media, 2008, pp.
607–616.

[26] T. Haynes, R. Wainwright, S. Sen, and D. Schoenefeld, “Strongly typed
genetic programming in evolving cooperation strategies,” in Proc. 6th
Int. Conf. Genetic Algorithms, L. Eshelman, Ed., Pittsburgh, PA, 1995,
pp. 271–278.

[27] D. J. Montana, “Strongly typed genetic programming,” Evol. Comput.,
vol. 3, no. 2, pp. 199–230, 1995.

[28] D. Chakraborty and S. Sen, “Computing effective communication poli-
cies in multiagent systems,” in Proc. 6th Int. Joint Conf. Autonom.
Agents Multi-Agent Syst., New York, 2007, pp. 1–3.

[29] M. Barlow, M. Luck, E. Lewis, M. Ford, and R. Cox, “Factors in team
performance in a virtual squad environment,” in Proc. Simulat. Technol.
Training Conf., 2004, pp. 94–99.

[30] M. Buckland, Programming Game AI by Example. Plano, TX: Word-
ware, 2005.

[31] T. Haynes, S. Sen, D. Schoenefeld, and R. Wainwright, “Evolving a
team,” in Working Notes: AAAI Symp. Genetic Programm., E. V. Siegel
and J. R. Koza, Eds., Cambridge, MA, 1995, pp. 23–30.

[32] D. Doherty and C. O’Riordan, “A phenotypic analysis of GP—Evolved
team behaviours,” in Proc. 9th Annu. Conf. Genetic Evol. Comput.,
New York, 2007, pp. 1951–1958.

Darren Doherty received the 1.1 B.Sc. (honors)
degree in information technology from the National
University of Ireland (NUI), Galway, Ireland, in
2005, where he is currently working towards the
Ph.D. degree in game AI and evolutionary computa-
tion at the Department of Information Technology.

His main research interests include: evolutionary
computation, AI, and computer game development.

Mr. Doherty is currently a member of the NUI
Computational Intelligence Research Group (CIRG).

Colm O’Riordan received the B.Sc. degree (with
honors) in computer science and the M.Sc. degree
in computer science from University College Cork,
Ireland.

Currently, he lectures in the Department of Infor-
mation Technology, National University of Ireland
(NUI), Galway, Ireland. His research interests are
in the fields of agent-based systems, artificial life,
evolutionary computation, and information retrieval.
His current research focuses on cooperation and
coordination in artificial life societies and multiagent

systems.

