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This paper shows the potential of neural networks based on the Adaptive Resonance The-
ory as tools that generate warning signals when bankruptcy of a company is expected
(bankruptcy prediction problem). Using that class of neural networks is still unexplored
to date. We examined four of the most popular networks of the class — fuzzy, distributed,
instance counting, and default ARTMAP. In order to illustrate their performance and

to compare with other techniques, we used data, financial ratios, and experimental con-
ditions identical to those published in previous studies. Our experiments show that two
financial ratios provide highest discriminatory power of the model and ensure best pre-
diction accuracy. We examined performance and validated results by exhaustive search
of input variables, cross-validation, receiver operating characteristic analysis, and area
under curve metric. We also did application-specific cost analysis. Our results show that
distributed ARTMAP outperforms the other three models in general, but the fuzzy
model is best performer for certain vigilance values and in the application-specific con-
text. We also found that ARTMAP outperforms the most popular neural networks —
multi-layer perceptrons and other statistical techniques applied to the same data.

Keywords: Neural networks; data mining; ARTMAP; bankruptcy prediction.

1. Introduction

One of the most significant threats for many businesses today, despite their size
and the nature of their operation, is insolvency. The economic cost of business
failures is significant. The suppliers of capital, investors, and creditors, as well as
management and employees, are severely affected by business failure. The need for
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reliable empirical models that predict corporate failure promptly and accurately is
imperative to enable decision makers to take either preventive or corrective action.

Estimating potential for insolvency, decision makers usually apply scoring sys-
tems, which takes into account factors, such as leverage, earnings, and reputation.
Due to lack of metrics and subjectiveness in estimates, sometimes decisions can be
unrealistic and not consistent.1

Generally, a prediction of corporate insolvency can be viewed as a pattern recog-
nition problem, and as such, it can be solved using one of two approaches: structural
and empirical. The former derives the probability of a company for default, based
on its characteristics and dynamics, while the latter approach relies on previous
knowledge and relationships in that area, learns from existing data or experience,
and deploys statistical or other methods to predict failure.

Kumar and Ravi2 provide a comprehensive survey on empirical techniques
used to predict insolvency, all grouped into two categories: statistical and intel-
ligent. Most popular statistical techniques are linear discriminant analysis, mul-
tivariate discriminate analysis, quadratic discriminant analysis, logistic regression,
and factor analysis. Among the intelligence techniques most common are neural net-
works, decision trees, case-based reasoning, evolutionary approaches, etc.2,3 Tradi-
tional statistical techniques have often been criticized because of their assumptions
about linear separability of training data, multivariate normality, and indepen-
dence of the predictive variables.1,4 Such constraints are incompatible with the
complex nature, boundaries, and interrelationships of most of financial ratios used
for learning and prediction. The intelligent techniques have shown themselves more
appropriate for the task. For instance, neural networks do not rely on a priori
assumptions about the distribution of data and work well in unstructured and noisy
environment.1,5

Multi-layer perceptron is most common, well known, and widely used model
of supervised neural networks. Sharda and coworkers6–9 used five financial ratios
introduced by Altman10 and multi-layer perceptron to predict bankruptcy. They
reported significantly better prediction accuracy than statistical techniques applied
to the same data. Rahimian et al.11 compared the performance of multi-layer per-
ceptron, Athena (an entropy-based neural network), and single-layer perceptron
on the bankruptcy prediction problem using the same Altman’s ratios. Serrano-
Cinca12 also used Altman’s ratios and compared his multi-layer perceptron with
others’ and some statistical techniques. Bell et al.,13 Hart,14 Yoon et al.,15 and
Curram and Mingers16 also compared the classifying power of different statistical
tools and multi-layer perceptron.

Despite their good performance, multi-layer perceptrons have a well-known
drawback — unclear structure. Choice of optimal network architecture, in par-
ticular number of layers and hidden nodes, is a challenge that has no theoretical
answer. A good architecture for an application can be found only by empirical
means and experiments.

Many other techniques have been used to predict bankruptcy. Salcedo-Sanz
et al.17 propose genetic programming applied to data from insurance companies.

In
t. 

J.
 I

nf
o.

 T
ec

h.
 D

ec
. M

ak
. 2

01
0.

09
:9

59
-9

78
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
T

E
X

A
S 

A
T

 S
A

N
 A

N
T

O
N

IO
 o

n 
08

/2
3/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



October 26, 2010 12:52 WSPC/S0219-6220 173-IJITDM
S0219622010004111

Fuzzy, Distributed, Instance Counting, and Default Artmap Neural Networks 961

Their results were compared with rough sets approaches. Shin and Lee18 used
support vector machines for modeling business failure prediction. Cielen et al.19

suggested the combined use of linear programming and inductive machine learning.
Our research was motivated by the fact that a class of neural networks —

those based on the Adaptive Resonance Theory — is still unexplored as a tool for
bankruptcy prediction. Here we explore four of them — fuzzy ARTMAP, distributed
ARTMAP, instance counting ARTMAP, and default ARTMAP. We selected a data
set that has already been used with other neural network models, in particular
multi-layer perceptrons and self-organizing feature maps, which allow us to compare
results.

This paper is organized as follows: Sec. 2 provides an overview of the neural
network architectures used in this study; Sec. 3 discusses the research design, data
set, data preprocessing, and techniques of analysis; Sec. 4 presents and discusses
experimental results; and Sec. 5 gives conclusions.

2. Neural Networks

There is a variety of neural network models for clustering and classification, ranging
from very general architectures, which are applicable to most of the learning prob-
lems, to highly specialized networks that address specific problems. Each model
has a particular topology that determines the neurons (nodes) layout and a specific
algorithm to train the network or to recall stored information. Among the models,
the most common is the multi-layer perceptron (MLP), which has a feed-forward
topology and error-backpropagation learning algorithm.20 Authors often call MLP
just neural networks, but this is not quite correct as there are other members of
the big family of neural networks, such as those with recurrent topology — self-
organizing feature maps,21 Hopfield networks,22,23 and Adaptive Resonance Theory
networks24 discussed here.

2.1. Neural networks based on the Adaptive Resonance Theory

The Adaptive Resonance Theory (ART), introduced by Grossberg in 1970, began
with analysis of human cognitive information processing.24,25 It led to creation
of a family of self-organizing neural networks for fast learning, pattern recogni-
tion, and prediction. Some popular members of the family are both unsupervised
models: ART1, ART2, ART2-A, ART3, fuzzy ART, distributed ART; and super-
vised models: ARTMAP, instance counting ARTMAP, fuzzy ARTMAP, distributed
ARTMAP, and default ARTMAP.26 Fundamental computational design goals were
providing memory stability, fast or slow learning mechanism in an open and evolv-
ing input environment, and implementation by a system of ordinary differential
equations approximated by appropriate techniques.24

A remarkable feature of the ART neural networks is their on-line, one-pass fast
learning algorithm. In contrast, MLP offers off-line slow learning procedure that
requires availability of all training patterns at once in order to avoid catastrophic
forgetting in an open input environment. The adaptiveness makes ART networks
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suitable for classification problems in dynamic and evolving domains, whereas MLP
are mostly suited for problems related to static environments.

Many applications of the ART networks are classification problems, where the
trained system tries to predict a correct category of an input sample.27−29 In fact,
these tasks are pattern recognition problems, as classification may be viewed as
a many-to-one mapping task that entails clustering of the input space and then
association of the produced clusters with a limited number of class labels.

2.2. ARTMAP architecture

ARTMAP is a supervised neural network which consists of two unsupervised ART
modules, ARTa and ARTb and an inter-ART module, called a map-field (see
Fig. 1).30 An ART module has three layers of nodes: the input layer F0, the com-
parison layer F1, and the recognition layer F2. A set of real-valued weights Wj

is associated with the F1-to-F2 layer connections between nodes. Each F2 node
represents a recognition category that learns a binary prototype vector wj . The F2
layer is connected, through weighted associative links, to a map-field F ab.

The following algorithm30,31 describes the ARTMAP learning:

(1) Initialization. Initially, all the F2 nodes are uncommitted, all weight values are
initialized. Values of network parameters are set.

(2) Input pattern coding. When a training pattern is presented to the network as
a pair of two components (a, t) where a is the training sample and t is the
class label, a process called complement coding takes place. It transforms the
pattern into a form suited to the network. A network parameter called vigilance
parameter (ρ) is set to its initial value. This parameter controls the network

Fig. 1. Block diagram of ARTMAP neural network, adapted from Carpenter et al.30
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‘vigilance’, i.e., the level of details used by the system when it compares the
input pattern with the memorized categories.

(3) Prototype selection. The input pattern activates layer F1 and propagates to
layer F2, which produces a binary pattern of activity such that only the F2
node with the greatest activation value remains active, i.e., ‘winner-takes-all’.
The activated node propagates its signals back onto F1, where a vigilance test
takes place. If the test is passed, then resonance is said to occur. Otherwise,
the network inhibits the active F2 node and searches for another node that
passes the vigilance test. If such a node does not exist, an uncommitted F2
node becomes active and undergoes learning.

(4) Class prediction. The class label t activates the F ab layer in which the most
active node yields the class prediction. If that node constitutes an incorrect
class prediction, then another search among F2 nodes in Step 3 takes place.
This search continues until either an uncommitted F2 node becomes active
(and learning directly ensues in Step 5), or a node that has previously learned
the correct class prediction becomes active.

(5) Learning. The neural network gradually updates its adaptive weights toward
the presented training patterns until a convergence occur. The learning dynamic
can be described by a system of ordinary differential equations.30

2.3. Fuzzy, distributed, instance counting, and default ARTMAP

neural networks

Fuzzy ARTMAP was developed as a natural extension to the ARTMAP
architecture.32 This is accomplished by using fuzzy ART modules instead of ART1,
which in fact replaces the crisp (binary) logic embedded in the ART1 module
with a fuzzy one. In fact, the intersection operator (∩) that describes the ART1
dynamics is replaced by the fuzzy AND operator (∧) from the fuzzy set theory
((p∧q)i ≡ min(pi, qi)).33 This allows the fuzzy ARTMAP to learn stable categories
in response to either analog or binary patterns, in contrast to the basic ARTMAP,
which operates with binary patterns only.

An ART1 module maps categories into F2 nodes according to the rule winner-
takes-all, as discussed above, but this way of functioning can cause category prolif-
eration in a noisy input environment. The explanation of this fact is that the system
adds more and more F2 category nodes in order to meet the demands of predic-
tive accuracy believing that the noisy patterns are samples of new categories. To
address this drawback, Carpenter et al.34 introduced a new distributed ART mod-
ule, which features a number of innovations, such as new distributed instar and
outstar learning laws. If the ART1 module of the basic ARTMAP is replaced by a
distributed ART module, the resulting network is called distributed ARTMAP.34,35

Some experiments show that a distributed ARTMAP retains the fuzzy ARTMAP
accuracy while significantly reducing the network size.35
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Instance Counting (IC) ARTMAP adds to the basic fuzzy ARTMAP system
new capabilities designed to solve computational problems that frequently arise in
prediction. One such problem is inconsistent cases, where identical input vectors
correspond to cases with different outcomes. A small modification of the fuzzy
ARTMAP match tracking search algorithm allows the IC ARTMAP to encode
inconsistent cases and make distributed probability estimates during testing, even
when training employs fast learning.36 IC ARTMAP extends the fuzzy ARTMAP
giving a good performance on various problems.

A comparative analysis of the ARTMAP modifications, including fuzzy
ARTMAP, IC ARTMAP, and distributed ARTMAP, has led to the identification
of the default ARTMAP network,26 which combines the winner-takes-all category
node activation during training, distributed activation during testing, and a set of
default network parameter values that define a ready-to-use, general-purpose neu-
ral network for supervised learning and recognition. The default ARTMAP features
simplicity of design and robust performance in many application domains.

3. Research Design

Our motivation to conduct this research was to fill a gap in the bankruptcy predic-
tion field by using four models of neural networks, still unexplored in that domain.
The main research objective was to investigate how ARTMAP models find common
characteristics amongst failing firms and distinguish them from the viable firms in
order to predict bankruptcy. Another objective was to investigate how different
variants of the ARTMAP networks perform and which one is the most appropriate.
We also wanted to compare ARTMAP performance with that of other classification
techniques by using the same data sets and experimental conditions. Part of our
study aimed to investigate if the ARTMAP models are sensitive to outliers, i.e.,
observations in the data sets that are numerically distant from the rest of the data.
Such data values can often be misleading to classifiers and have a significant effect
on the correct classification.

In order to estimate neural network performance we used different metrics and
analysis techniques, such as accuracy, true and false-positive rates, receiver operat-
ing characteristics analysis, area under the curve, unit cost, and cost analysis.

In order to validate results, we used the k-fold cross-validation method, where
k = 5. According to Carpenter et al.,30 the value 5 is sufficient to validate the major-
ity of ARTMAP applications and 5 is recommended as a default parameter value.

Finally, we wanted to estimate the ARTMAP neural networks efficiency in terms
of training and testing time, and memory consumption.

3.1. The data

The data set, we used, has been used in other studies in the domain.7,9,11,12 It
contains financial information from the Moody’s Industrial Manual for a number
of years for a total of 129 firms, of which 65 are bankrupt and the rest are solvent.

In
t. 

J.
 I

nf
o.

 T
ec

h.
 D

ec
. M

ak
. 2

01
0.

09
:9

59
-9

78
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
T

E
X

A
S 

A
T

 S
A

N
 A

N
T

O
N

IO
 o

n 
08

/2
3/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



October 26, 2010 12:52 WSPC/S0219-6220 173-IJITDM
S0219622010004111

Fuzzy, Distributed, Instance Counting, and Default Artmap Neural Networks 965

The data entries have been randomly divided into two subsets: one for training,
made up of 74 firms, of which 38 are bankrupt and 36 are non-bankrupt; another
set for testing, made up of 55 firms, of which 27 are bankrupt and 28 are non-
bankrupt. In order to follow the experimental conditions of the studies mentioned
above and to be able to compare results, we decided not to use train and test
techniques, such as ‘leave-one-out’ and stick to the train and test data sets as they
have been used in the studies.

Brigham and Gapenski37 suggest that there is an empirical basis for grouping
financial ratios into seven categories: return on investment, financial leverage, capi-
tal turnover, short-term liquidity, cash position, inventory turnover, and receivables
turnover. Altman10 found, however, that only certain of these ratios have discrim-
inating capability. This research uses the Altman’s ratios, namely:

— R1: Working Capital/Total Assets. Working capital is defined as the difference
between current assets and current liabilities. It can be regarded as net current
assets, therefore, a good measure of short-term solvency.

— R2: Retained Earnings/Total Assets. Retained profits are obviously higher for
older, established firms than for new entrants, other things being equal. This
ratio might, therefore, seem to be unfairly weighted in favor of older firms, but
actually it is not.

— R3: EBIT/Total Assets. EBIT is the abbreviation for ‘Earnings Before Interest
and Taxes’. This ratio is useful for comparing firms in different tax situations
and with varying degrees of financial leverage.

— R4: Market Value of Equity/Book Value of Total Debt. This measure examines
a firm’s competitive marketplace value.

— R5: Sales/Total Assets. This ratio, sometimes called the assets turnover ratio,
measures the firm’s asset utilization.

3.2. Preprocessing

Most applications with neural networks transform rough data into form suitable
for training and testing. A common form of transformation is linear rescaling of
the input variables. This is necessary as different variables may have values which
differ significantly because of different units of measurements. Such a disbalance can
reduce the predictive abilities of the model as some of the variables can dominate
over others. The linear transformation we used arranged for all of the inputs to
have similar values. Each of the input variables xi was treated independently and
its mean and variance were calculated using:

x̄i =
1
N

N∑

n=1

xn
i , (1)

σ2
i =

1
N − 1

N∑

n=1

(xn
i − x̄i)2, (2)
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where n = 1, . . . , N labels the patterns. We then defined a set of rescaled variables
given by:

x̃n
i =

xn
i − x̄i

σi
. (3)

Transformed variables have zero mean and unit standard deviation over the
transformed training set. The linear transformation, however, is not sufficient for
training or testing the neural networks as they need input in the form of M -
dimensional vectors of floating point numbers in between 0 and 1. A second pre-
processing step maps the data values into [0, 1] using:

x̂n
i =

(x̃n
i − x̃min

i )
(x̃max

i − x̃min
i )

, (4)

where xmax
i and xmin

i are the max and min values of the variable xi, respectively.

3.3. Reduction of dimensionality

The principal motivation for reduction of dimensionality is that a network with
fewer inputs has fewer adaptive parameters to be determined, and these are more
likely to be properly constrained by a data set of limited size (as the data set
we used), leading to a network with better generalization properties. In addition,
a neural network with fewer weights may be faster to train. If too much infor-
mation is lost after reduction of dimensionality, then the resulting reduction in
performance cannot compensate any improvement arising from avoidance of over-
fitting (or overtraining).38 In cases where learning is performed too long or where
training examples contain too much information, the neural network may adjust
to very specific random features of the training data that have no causal rela-
tion to the target function. In this case, the performance on the training examples
still increases while the performance on unseen data becomes worse because the
neural network loses its ability to generalize. Using univariate F -ratio analysis,
Serrano-Cinca12 ranked Altman’s ratios and suggested that the second and third
variables have a greater discriminatory power in contrast to the fifth one. The
univariate analysis, however, does not estimate combinations of variables. Further-
more, the optimal variable selection is different for different classification mod-
els, i.e., there is no guarantee that an optimal set for an MLP would perform
well with an ARTMAP neural network. Ideally, the optimal subset for a model
can be selected by the exhaustive (brutal-force) search approach, which checks
whether each variable subset satisfies the requirements of the bankruptcy predic-
tions problem. For n possible variables we have a total of 2n possible subset, since
each variable can be present or absent. We took advantage of the small number
of variables (five) to apply exhaustive search using 31 subsets of train and test
data sets.
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3.4. Performance metrics

Binary classifiers, such as the ARTMAP neural nets, map test data set instances
to one element of the set of positive and negative class labels {p, n}. Outcomes
from classifications can be summarized into a 2 × 2 matrix (confusion matrix or
contingency table) where the four values are the following:

— true positive (TP), also known as hits;
— true negative (TN), or correct rejection;
— false positive (FP), called also type I error; and
— false negative (FN), or type II error.

The confusion matrix forms the basis for several common metrics defined below:

— true positive rate (TPR), known as hit rate, recall, or sensitivity:
TPR = TP/(TP + FN ) = TP/P ;

— false positive rate (FPR), known as false alarm rate, or fall-out:
FPR = FP/(FP + TN ) = FP/N ;

— true negative rate (TNR), known as specificity:
TNR = SPC = TN /(FP + TN ) = 1 − FPR;

— false negative rate (FNR), or positive error:
FNR = FN /(TP + FN )

— accuracy (ACC):
ACC = (TP + TN )/(P + N ); and

— macro-average (MAVG)
MAVG = AVG (TPR, TNR).

3.5. Receiver operating characteristic analysis

Despite accuracy is common figure of merit for classifiers, it can be misleading
if an important class is underrepresented, e.g., a data set may contain only few
instances of bankrupt companies. In that case sensitivity and specificity can be more
relevant performance estimators.29 Second, the accuracy depends on the classifier’s
operating threshold, such as the vigilance parameter of ARTMAP, and choosing the
optimal threshold can be challenging. Finally, different types of misclassifications
have different costs. For example, in the bankruptcy prediction domain, errors of
type I and type II can produce different consequences and have different costs.

In recent years there is an increased use of the receiver operation characteristic
(ROC) analysis in the machine learning research due to realization that simple
classification accuracy is often a poor metric for measuring performance. ROC
curves have properties that make them especially useful for applications with skewed
class distribution and unequal classification error costs.39 An ROC space is defined
by FPR and TPR as x and y axes, respectively, which depict relative trade-offs
between true positive (benefits) and false positive (costs). Each prediction result
or one instance of a confusion matrix represents one point in the ROC space. The
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perfect classification would yield a point in the upper left corner or coordinate (0, 1),
representing 100% sensitivity (all true positives are found) and 100% specificity (no
false positives are found). A completely random guess would give a point along the
no-discrimination line from the left bottom to the top right corner.

Soft or probabilistic classifiers, such as naive Bayesian and MLP neural net-
work, produce probability values representing the degree to which class the instance
belongs to. For these methods, setting a threshold value will determine a point in
the ROC space. In contrast, crisp or discrete classifiers, such as ARTMAP and
decision trees, yield numerical values or binary label. When a set is given to such
classifiers, the result is a single point in the ROC space. As we want to generate
a ROC curve from an ARTMAP classifier, it can be converted to soft classifier by
‘looking inside’ it. Varying the vigilance parameter generates aggregation of points
in the ROC space.

Comparing classifiers we may want to reduce ROC performance to a single scalar
value representing expected performance. A common method is to calculate the area
under the ROC curve (AUC).37 Calculation of AUC in the case of crisp classifiers
requires trapezoidal approximation (5). Best classification model maximizes the
AUC index.

AUC =
1
2

∑

i∈ROCCH

(TPRi + TPRi+1)(FPRi+1 − FPRi). (5)

4. Empirical Results and Discussion

In machine learning applications, classification performance is often measured by
accuracy as a figure of merit. For a given operating point of a classifier, the accuracy
is the total number of correctly classified instances divided by the total number of
all available instances.

A series of experiments sought to estimate bankruptcy prediction accuracy of the
fuzzy, IC, distributed, and default ARTMAP neural networks. Using 5-fold cross-
validation and in accordance with the exhaustive search strategy discussed above,
31 data sets were composed and indexed from 1 to 31 where indexes represent data
relevant to subsets of financial ratios, namely: indexes 1 to 5 represent {R1} to
{R5}; 6 to 15 for pairs of ratios {R1, R2}, {R1, R3} to {R4, R5}; 16 to 25 for
triples — {R1, R2, R3}, {R1, R2, R4} to {R3, R4, R5}; 26 to 30 for quarters;
and 31 for the full set {R1, R2, R3, R4, R5}. In order to investigate how vigilance
parameter is related to the prediction accuracy, each subset was presented to the
four models and iterated 41 times using vigilance parameter values from 0 to 1 with
increment of 0.025. Figure 2 shows the results for each ARTMAP model. Axis x of
each model represents one subset of financial ratios (from 1 to 31); axis y counts
prediction accuracy in % achieved by that model. Each stem (subset) contains a
number of circles, where a single circle corresponds to a fixed vigilance parameter
value. In that way the figure represents prediction accuracy obtained by varying two
components: subsets (collection of financial ratios), and the ARTMAP vigilance.
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The figure shows that if an individual financial ratio is used (stems 1–5), second
(R2) and fourth (R4) obtain highest accuracy regardless of the model, namely:
80% (R4) for the fuzzy; 78.2% (R2 or R4) for the distributed; 80% (R2) for the IC;
and 80% (R4) for the default model. We can summarize that using single financial
ratio fuzzy, IC, and default perform better than distributed ARTMAP; second,
when ARTMAP works with individual Altman’s ratios, two of them have highest
discriminatory power — R2 and R4; and finally, all ARTMAP models used with a
single Altman’s ratio can outperform the statistical technique linear discriminant
analysis (74.5% accuracy) used with all ratios.7

From the results above we could expect that when R2 and R4 are used together,
their combined discriminatory power can lead to even better results. Indeed, Fig. 2
shows that subset 11 {R2, R4} yields the highest score for all ARTMAP models. The
subset 24 {R2, R4, R5} is second best. After well-tuned vigilance parameter and
using financial ratios R2 and R4, ARTMAP neural networks achieve the following
prediction accuracy: 85.5% for the fuzzy and default model; 83% for the IC and
distributed. It can be noticed that fuzzy and default ARTMAP (85.5%) outperform
the best accuracy reported from MPL12 (83%). At the same time IC and distributed

Fig. 2. Prediction accuracy of fuzzy, distributed, IC, and default ARTMAP neural networks by
varying Altman’s variables (31 possible subsets exist) and varying system’s vigilance (41 vigilance
parameter values from 0 to 1 with an increment of 0.025 tested). Axis x represents variable
subsets; axis y — prediction accuracy in %; each stem shows accuracy values obtained by varying

the system vigilance.
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Fig. 3. Prediction accuracy in % obtained by fuzzy, distributed, IC, and default ARTMAP neural
networks using variables {R2, R4} and 41 values of the vigilance parameter from 0 to 1 with
incremental step of 0.025.

models score 83.6%, which is equal to the MLP’s one. Figure 3 provides a more
detailed view of prediction accuracy obtained by the four ARTMAP models using
the best performing subset of financial ratios {R2, R4} and varying the vigilance
parameter from 0 to 1. It can be seen that in the first part of the interval [0, 0.4], the
fuzzy, IC, and default ARTMAP achieve a steady accuracy of at least 81.8% (83.6%
for the IC), but in the rest of the interval it varies and has peaks at certain parameter
values or intervals. Only the distributed model has unsteady and relatively low
accuracy in the whole interval.

Table 1 compares misclassified companies (patterns) from the four ARTMAP
models discussed here and other techniques: linear discriminant analysis,7 MLP7;
MLP12; and single-layer perceptron,11 MLP,11 and Athena network.11 All models
use the same experimental conditions. The table shows that the fuzzy and default
misclassify 8; distributed and IC ARTMAP and MLP12 — 9, all other models —
10, except linear discriminant analysis which misclassifies 14.

4.1. ROC analysis results

Figure 4 represents the ROC space for the fuzzy, IC, distributed, and default models,
respectively. Each point in the figure represents a classifier obtained by certain
value(s) of the vigilance parameter (text below Fig. 4 shows those values).
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Fig. 4. ROC space for Fuzzy, IC, Distributed, and Default ARTMAP models. Points represent
different classifiers associated with vigilance parameter values, as follows: Fuzzy: A{0.0–0.4; 0.475–
0.525; 0.7; 0.825}, B{0.425–0.45}, C{0.55–0.575}, D{0.6–0.675; 0.75}, E{0.725; 0.775}, F{0.8; G:
0.825; 0.875}, H{0.9–0.925}, I{0.95; 1}, J{0.975}. IC: A{0.0–0.45; 0.5–0.575}, B{0.475}, C{0.6–
0.75}, D{0.775–0.875}, E{0.9}, F{0.925–0.95}, G{0.975}. Distributed: A{0.0–0.15}, B{0.175–
0.35}, C{0.375; 0.85–0.875; 0.925–0.95}, D{0.4–0.425}, E{0.45}, F{0.475–0.525}, G{0.55–0.65},
H{0.675}, I{0.7}, J{0.725}, K{0.75}, L{0.775–0.8}, M{0.825; 0.9; 0.975}. Default: A{0.0–0.4;
0.475–0.675}, B{0.425–0.45}, C{0.7–0.725}, D{0.75}, E{0.8}, F{0.825; 0.875–0.925}, G{0.85},
H{0.95}, I{0975}, J{1.0}.

A point in the space is better than another if it is to the northwest (TPR is
higher, FPR is lower, or both) of the first. Classifiers appearing on the left-hand
side near the x axis may be thought of as more ‘conservative’ as they make positive
classifications only with strong evidence so they make few false positive errors.
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Classifiers close to the upper right-hand side of an ROC graph may be thought of
as more ‘liberal’ as they make positive classifications with weak evidence so they
classify nearly all positives correctly, but they often have high false positive rates.

Given the points in the ROC space of the four ARTMAP models, we can con-
struct ROC convex hull curves connecting the most northwest points (FPR, TPR)
as well as the two trivial classifiers (0, 0) and (1, 1). This is possible, because given
two classifiers we can construct any intermediate classifier just randomly weight-
ing both classifiers (giving more or less weight to one or the other). This creates
a continuum of classifiers between any two classifiers, which allow linking of the
two points by a line. The convex hull has a number of useful implications. The
classifiers below the convex hull curve can be discarded because there is no com-
bination of class distribution/cost matrix for which they could be optimal. Since
only the classifiers on the convex hull are potentially optimal, no others need to
be retained. This allows to determine the candidates for optimal classifiers: for the
fuzzy model — points B and E; IC — A and C; distributed — E and K; and the
default model has a single candidate — B. Selection of the best (optimal) classifier
from among candidates depends on the context of application, determined by the
class distribution and the error cost (will be discussed in the following section).

4.2. AUC results

Table 2 shows the AUC values of the fuzzy, IC, distributed, and default ARTMAP
models. The values show that the distributed ARTMAP is best performer, followed
by fuzzy, default, and IC models. It should be pointed out that for crisp classifiers
the AUC metric provides an overall estimation of the model performance and does
not find optimal classifiers of the ROC convex hull.

4.3. Cost analysis

The classifier with lowest error rate is frequently not the best classifier. In many
applications not all the errors produced by a predictor have the same consequences.

Table 2. Figure of merits for fuzzy, IC, distributed, and default ARTMAP
models: AUC and unit cost of ROC convex hull (ROCCH) points. Letters
in bold show the optimal classifier for a model.

Model AUC ROCCH points Unit cost

Fuzzy ARTMAP 0.8624 B 0.786
E 0.929

IC ARTMAP 0.8392 A 0.321
C 0.393

Distrib. ARTMAP 0.8690 E 1.643
K 0.321

Default ARTMAP 0.8558 B 0.929
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Table 3. Cost-benefit matrix.

Actual positive Actual negative

Predicted positive 0 FPcost = X
Predicted negative FNcost = αX 0

The important thing is not to obtain the classifier with fewer errors but the one
with lowest cost. ROC graphs have been criticized because of their inability to
handle example-specific costs as they are based on the assumption that the costs
of all true positives and false positives are equivalent. Cost analysis requires trans-
formation of the confusion matrix into cost–benefit matrix as shown in Table 3. It
encounters cost of misclassifications, both false positive and false negative. In the
table X is the lost investment caused by insolvency of a company; αX , the lost
profit of investment in a solvent company, where α can be an investor’s annual
profit rate.

Using the cost matrix, we evaluated all points belonging to the convex hull
curves, as they are candidates for optimal classifiers. To calculate unit cost for a
classifier we first calculated the slope of that point (5), (6).

slope = (FPcost/FNcost) × (Neg/Pos) (6)

cost per unit = FNR + slope × FPR. (7)

Outcomes from calculation are presented in Table 2. As an optimal classifier
minimizes the cost per unit, the best classifiers for the models are as follows: fuzzy —
B; IC — A; Distributed — K; and default — B. That means that the ARTMAP
models have best performance with vigilance parameter values associated with those
points.

The analysis also helps to rank the four ARTMAP models. Table 2 shows that
the two best classifiers are K of the distributed and A of the IC, followed by B
of the fuzzy, and K of the default model. Comparing the results with those of the
AUC metric, we can conclude that the distributed model is not only best performer
after accurate tuning, but it also provides best overall performance. The IC model
has poor overall performance, but after careful tuning it can show best result. The
fuzzy model shows moderate results, which exceed those of the default ARTMAP
model. These conclusions, however, are application-specific rather than general. The
conclusions also demonstrate that different performance metrics, such as accuracy,
AUC, and unit cost show different results.

4.4. Further experiments

A series of experiments sought to investigate if the four ARTMAP models are
sensitive to outliers, i.e. data points that could be excluded because of inconsistency
with the statistical nature of the bulk of the data. We marked data points as outliers
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if their values are more than three times the standard deviation value away from
the mean of the relevant variable. The four models were trained and tested without
outliers and results showed no difference from those obtained by the experiments
discussed before. The four ARTMAP models showed no sensitivity to the outliers
in the context of the domain and data sets discussed here.

Other experiments also led to the conclusion that best values for certain network
parameters are those proposed by Carpenter et al.,30 namely: baseline vigilance
ρtest = 0; signal rule α = 0.01; and learning fraction β = 1.0.

We also examined efficiency of the four in terms of train time, test time, and
RAM used for the long-term memory of the networks. Results show that for all
trainings and testings, a session time is less than 0.02 sec. Consumed computer
memory was less than 2.9 kb. An explanation for the instance responsiveness is that
the ARTMAP models feature one-pass learning. In contrast, the widely used MLP
require multiple presentations (epochs) of the training set to learn. Some studies
report that MLPs with similar size data sets achieve convergence after 1400 training
iterations,40 100,000 iterations,9 and 191,400 iterations over 24 hours.6 These figures
illustrate once again some of the advantages of the ARTMAP models.

5. Conclusions

Today, financial institutions are paying heavy price for their indiscriminate prac-
tices. Corporate bankruptcies have put many institutions on the brink of insolvency
and many others have been merged with or acquired by other financial institutions.
Decision-making problems in the area require efficient analytic tools and techniques,
most of which involve machine learning in order to predict future financial status
of firms.

Our research was motivated by a gap in the studies on bankruptcy prediction
methods, namely using some still unexplored techniques based on the Adaptive Res-
onance Theory neural networks. Here we examine four of them — fuzzy ARTMAP,
distributed ARTMAP, instance counting ARTMAP, and default ARTMAP. In order
to illustrate the network performance and compare results from other techniques,
we used data, financial ratios, and experimental conditions identical with those
published in previous studies.

Our experiments show that financial ratios Retained Earnings/Total Assets and
Market Value of Equity/Book Value of Total Debt provide highest discriminatory
power and ensure best prediction accuracy for all the ARTMAP networks. We
also found that with appropriate network parameters ARTMAP provides 85.5%
accuracy, which outperforms all MLP networks and other classification techniques
applied to the same data. In order to avoid bias from the prediction accuracy and
estimate the overall classifier performance, we used fivefold cross-validation and
exhaustive search of input variables, receiver operating characteristic analysis, and
area under curve metric. The figures show that the distributed ARTMAP is best
performer followed by fuzzy, default, and instance counting ARTMAP.
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We also did application-specific cost analysis to find optimal network parame-
ters. The unit cost metric shows that by proper tuning of the network vigilance,
fuzzy ARTMAP appears to be best application-specific classifier followed by instant
counting, distributed, and default ARTMAP. Our experiments also showed that the
ARTMAP classifiers are not sensitive to outliers in the data set. The classifiers’ effi-
ciency in terms of train and test time was also confirmed experimentally.

In conclusion, we find that ARTMAP neural network is a promising technique
for bankruptcy prediction that outperforms the most popular MLP networks not
only in terms of prediction accuracy, but also as training time and adaptiveness in
a changing environment.
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