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Abstract
It is generally believed that in a situationwhere individual and collective interests are in conflict, the
availability of optional participation is a keymechanism tomaintain cooperation. Surprisingly, this
effect is sensitive to the use ofmicroscopic dynamics and can easily be brokenwhen agentsmake a fully
rational decision during their strategy updates. In the framework of the celebrated prisoner’s dilemma
game, we show that this discrepancy can befixed automatically if we leave the strict and frequently
artifact condition of a fully occupied interaction graph, and allow agents to change not just their
strategies but also their positions according to their success. In this way, a diluted graphwhere agents
maymove offers a natural and alternative way to handle artifacts arising from the application of
specific and sometimes awkwardmicroscopic rules.

1. Introduction

Despite extensive research efforts, the evolution of cooperation remains a puzzle in awide range of domains
[1, 2]. In this context, two-strategy games such as the prisoner’s dilemma (PD) game have beenwidely studied
formany years fromdifferent perspectives withmechanisms [3] such as group selection [4] and network
reciprocity [5–7] investigated. Traditionally, the agents’ interactions in those games are compulsory, i.e. the
agent has to opt between cooperation or defection, where the dilemma arises because individual selfishness leads
to a collective disaster [8, 9]. However, inmany real-world scenarios, the agents’ participation in the game is
voluntary (optional). Thus, in order to account for the concept of voluntary participation (abstention),
researchers have been exploring the voluntary prisoner’s dilemma (VPD) game, also known as the optional PD
game, which extends the PD to a three-strategy gamewhere agents can also choose to abstain fromplaying the
game [10–12]. In particular, abstention has attracted attention both for acting as amechanism to support
cooperation and for promoting cyclic behaviour [13–18]. The cyclic dominance behaviour is often studied
within the bounds of the rock-paper-scissors game, which, different to theVPDgame, imposes the cyclic
dominance in the payoffmatrix [19–24].

In addition to the discussion about the game strategies, studies concerning agentmobility are also of interest
because, inmany real ecological systems, individuals are usually on themove to improve their performance [25].
In this sense, research has shown that in a spatial environment,mobility and percolation thresholds have a
critical impact on the sustenance of biodiversity in nature [19, 26–31]. Interestingly, despite a large number of
papers discussing the effects ofmobility in the PD [32–37], the rock-paper-scissors [25, 38, 39] and the optional
public goods games [40–42], the impact ofmobility in the context of theVPD game is still almost unknown.
Indeed, some effort has also beenmade to explore contingentmovement strategiesmodelling the so-called ‘win-
stay, lose-move’ rule, which, as also argued by Szabó and Fáth [5], might capture the concept of abstention in the
sense that agents abstain bymoving away from their opponents [43–46]. Although this is a validway to account
for voluntary participation, we highlight that inmany scenarios theremust be a cost (payoff) associatedwith the
act of not playing the game, i.e. abstention defined in terms of the set of game strategies rather than the
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movement strategies. In otherwords, defining abstention as a strategy rather than amovement ensures that all
agents have the right to abstain froma game interaction, independently of having away towalk away (space
permitting) or not.

Despite the very recent introduction of theVPD game in a diluted networkwith a purely randommobility
scenario [47], many questions regarding the impact ofmobility, in both the sustenance of biodiversity and the
potential for widespread cooperation, remain unanswered. For instance, given the recent advances in the
understanding of coevolutionarymodels [48–54], what happens to the populationwhen considering agent
mobility in a coevolutionary fashion? Thus, without loss of generality, this research introduces theVPD game
with a coevolutionarymodel where not only the agents’ strategies but also theirmovement is subject to the
evolutionary process, which provides amore realistic representation ofmobility within the domain of
voluntary/optional participation.

Furthermore, we investigate the foundations of the emergence of cyclic dominance for theVPD game in
both the fully populated (withoutmobility) and diluted networks.We discuss that the emergence of the cyclic
dominance behaviour, which is commonly associatedwith theVPDgame, is very sensitive to the chosen
imitation rule. Results show that when using other imitation rules, the cyclic dominance can be broken easily,
but this difference diminisheswhenwe use amore general dilutedmodel wheremobility can repair themissing
chain that is necessary to support cyclic dominance.

The remainder of the paper is organised as follows. Section 2 describes themodel and the experimental
settings. Section 3 presents the results of the extensiveMonte Carlo (MC) simulations, which allow us to unveil
the reasonwhymobility and optionality favour cooperation and cyclic dominance. Finally, section 4 outlines the
main conclusions.

2.Methods

In order to account for the features of the concept of voluntary participation (abstention) and agentmobility, we
consider a set ofN rational agents playing theVPDgame (also known as the optional PD game) on aM×M
diluted square lattice networkwith vonNeumann neighbourhood and periodic boundary conditions, i.e. a
toroidwhere sites are either empty or occupied by an agent. In this way, to describe the lattice occupation, we
define the lattice’s density as ρ=N/M2 (0<ρ<1), where ρ=1means that the lattice is fully populated.

In theVPD game, agents can be designated as a cooperator (C), defector (D) or abstainer (A). Considering a
pairwise interaction, the payoffs are defined as follows:D gets P=0 formutual defection,C getsR=1 for
mutual cooperation,T=b for defection against a cooperator, and S=0 for cooperation against a defector.
Regardless of whether one or two agents abstain, both agents get the loner’s payoff L=σ, whereR>L>P.
Note that we adopt aweak version of the game, where > > >T R L P S maintains the nature of the
dilemma [7, 10].

We consider a randomly initialized population inwhichN/3 of each strategy (C,D andA) is distributed at
random in the network. Following the standard procedures of an asynchronousMC simulation in this context
[55, 56], at eachMC time step, each agent (x) is selected once on average to update its strategy and position
immediately. Thus, in oneMC step,N agents are randomly chosen to perform the subsequent procedures: if the
agent x has no neighbours, itmoves to one of the four nearest empty sites (vonNeumannneighbourhood) at
random; otherwise, the agent x accumulates the utilityUx by playing theVPD gamewith all its nearest active
(non-empty)neighbours (Ωx), selects one of them at random (i.e. the agent y, which also acquires its utilityUy),
and considers copying its strategy with a probability given by the Fermi–Dirac distribution function:

=
+ -

( )( )W
1

1 e
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U U Kx y

whereK=0.1 characterizes the amplitude noise to allow irrational decisions [5, 57]. In this research, we also
consider the scenario inwhich agents do notmake irrational choices in the strategy updating process
(equation (1)), i.e. the agent x only considers copying y ifUy>Ux.

After the agent x updates its strategy,Ux is recalculated, and x considersmoving to a random empty site (if
any) in its neighbourhoodwith probability:

=
+ -

( )( )W
1

1 e
, 2

u v Kx x

whereK=0.1, =u U kx x x is the agent xʼs average utility, kx is the number of active neighbours in xʼs
neighbourhood, and = + å +ÎW( ) ( )v u u k 1x x y y xx

is the average utility of xʼs neighbourhood including
itself. Thus, the agents that are performingworse (better) than their neighbours havemore (less) incentive
tomove.
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Note that tomake this research comparable with previousworks, we consider the absolute payoff during the
strategy imitation process (equation (1)). Nevertheless, it is noteworthy that our key results remain unchanged
qualitatively if we apply a degree-normalized payoff in this function.However, in the case ofmobility, the
application of an absolute payoff in equation (2)would cause an artifact effect.More precisely, it would result in
the erosion of a cooperative cluster because agents at the periphery, who have fewer neighbours, would always be
unsatisfied andmove, i.e. thementioned cluster would shrink gradually.

In order to avoid finite size effects, results are obtained for different network sizes, ranging fromM=200 to
M=1000. Simulations are run for a sufficiently long relaxation time (105 or 106MC steps), where thefinal level
of each strategy is obtained by averaging the last 104MC steps.

3. Results

In this section, we present some of the relevant experimental results obtainedwhen simulating a population of
agents playing theVPD game on diluted square lattice networks, i.e. a coevolutionarymodel where not only the
agents’ strategies but also their positions evolve over time. Firstly, we consider the case inwhich the population is
fully populated, i.e. density ρ=1, andwe demonstrate that the emergence of cyclic dominance in theVPD
game is sensitive to the chosen dynamical rule because by using other imitation rules the cyclic dominance can
be broken easily. Secondly, we investigate the case inwhich ρ<1 (diluted network), wherewe show that
mobility and dilution can repair themechanisms necessary for supporting cyclic dominance. Thirdly, we further
investigate themicro-level evolutionary dynamics for a diluted network bothwith andwithoutmobility.

3.1. Fully populated network (ρ=1): fragile cyclic dominance
In order to validate our coevolutionarymodel and provide grounds to explore the effects ofmobility on a diluted
square lattice, we start by investigating how the population evolves when there is no space for the agents tomove.
Figure 1 (upper panel) features the time course of the average frequency of each pure strategy, i.e. cooperation,
defection and abstention, for a density ρ=1, temptation to defect b=1.4, and the loner’s payoffσ=0.5. The
lower panel offigure 1 shows the typical spatial patterns of the strategies at differentMC steps. Note that as
ρ=1, themodel collapses to the traditional andwell-known scenario inwhich only the strategies evolve. As
expected, the results are qualitatively the same as those reported in previous studies [10, 47]. In this case the three
strategies coexist because of the emergence of cyclic dominance behaviourwhere defectors beat cooperators,
cooperators beat abstainers, and abstainers beat defectors [19, 20, 58].

To gain deeper insights into themechanismswhich underlie the cyclic dominance behaviour in the context
of a spatial VPDgame, we perform the same experiments as above but for the case inwhich an agent (x) only
considers copying the opponent’s strategy if the opponent (y) is performing better than itself, i.e. applies the
Fermi–Dirac distribution function (equation (1)) if and only if the utility of y is greater than the utility of x,
Uy>Ux. Interestingly, figure 2 shows that when this simplemodification inmicroscopic dynamics is imposed,
the cyclic dominance behaviour is broken and the population converges to a frozen statewhere only defection

Figure 1.Time course of the average frequency of cooperation (blue), defection (red) and abstention (green) for a fully populated
network (density r = 1)withN=4002 agents, temptation to defect b=1.4, and loner’s payoffσ=0.5 (top panel). Typical
evolution of spatial distribution of the strategies (bottompanel). Results are obtained for the case inwhich agents are allowed tomake
irrational decisions, i.e. applies the noisy Fermi–Dirac imitation rule (equation (1)) for any value ofUy andUx.
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and abstention are present, but the cooperator strategy becomes extinct. Note that the idea of employing
different imitation rules such as equation (1) for both rational and irrational decisions have been systematically
investigated in previous studies for two-strategy games [36, 59, 60], and it is well-known that different imitation
rules, as well as the adoption of different values ofK (amplitude noise) in the Fermi–Dirac rulemay affect the
outcome [57]. However, there is an unexplored gap in the literature regarding the possible consequences of the
adoption of the Fermi–Dirac rule in the context of theVPD game, and our results suggest that the cyclic
behaviour commonly associatedwith theVPD gamemay be related to the use of this function, which also
supports strategy changewhen the utility values are equal.

Figure 3 depicts the average frequency of the three strategies (C,D andA) in the full s-b planewhen agents
are allowed tomake irrational (top panels) and rational (bottompanels) decisions. Note that while cyclic
dominance ismaintained for almost any combinations of b andσ values in the traditional case (top), the same
does not occurwhen the imitation rule is slightly changed (bottom). Thus, contrary to previous observations,
our results highlight that the use of noisy imitation, dictated by equation (1), is an essential condition for
promoting cyclic behaviour in the context of theVPD game. The reason for this discrepancy can be summarized
as follows:

• Considering a random initial population (see the earlyMC steps infigures 1 and 2), the typical trajectory
predicts the advantage of defectors which is then followed by the rise of abstainers or both cases.

• Next, checking (or not) for theUy>Ux condition can be decisive to allow (or not) the subsequent rise of
cooperators, which in turn supports the cyclic dominance phenomenon seen infigure 1.

• At amicro level, if one cooperator/defector (x) ismostly surrounded by abstainers (y), its utilityUxwill be
mostly equal toUy. Remember that in theVPD game, if one or two agents abstain (A), bothwill get the same
loner’s payoffσ, i.e. for any pair of strategiesCA,AC,DA,AD,AA both agents get an identicalσ value.

Thus, if we impose the >U Uy x condition, as the utilities of x and y are the same, the population is not able to
curb the spreading of abstainers, which consequently produces the pattern observed infigure 2, i.e. a few isolated
defectors stuck in a sea of abstainers. Otherwise, if equation (1) is applied for any value ofUx−Uy, as the
number of abstainers increase,Wwill be approximately equal to 0.5 formost agents, which is one of themain
mechanisms to keep the three strategies alive as observed infigure 1.

3.2.Diluted network (ρ<1): recovering cyclic dominance and promoting cooperation
Aswe already argued, a fully occupied interaction graph seems to be a specific rather than a generally valid real
life situation, hence this section discusses the coevolutionary cases for a diluted lattice networkwhere not only
the strategies but also the agents’ positions evolve over time.

At amacro-level, we start by analysing the influence of the density ρ on the evolutionary process for the noisy
equation (1) (i.e. agents are allowed tomake irrational decisions) after a sufficiently long relaxation time. In line

Figure 2.Time course of the average frequency of cooperation (blue), defection (red) and abstention (green) for a fully populated
network (density ρ=1)withN=4002 agents, temptation to defect b=1.4, and loner’s payoffσ=0.5 (top panel). Typical
evolution of spatial distribution of the strategies (bottompanel). Results are obtained for the case inwhich agentsmake rational
decisions only, i.e. applies the Fermi–Dirac imitation rule (equation (1)) if and only ifUy>Ux. As compared tofigure 1, note that
cyclic dominance is quickly broken and cooperators die out soon because of the slight change in the imitation rule.
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with previous research for two-strategy games such as the PD game [32, 34, 61], experiments with our
coevolutionarymodel reveal thatmobility and dilution also play a key role in promoting cooperation in theVPD
game. Figure 4 shows the average frequency of the three strategies in the full s-b plane for some representative
densities. As compared to the traditional case (ρ=1.0 regime i.e.figure 3 top), we observe that the cyclic
dominance behaviour still emerges formost s-b settings for ρ�0.59. Interestingly, results show that
scenarios of full cooperation arisemonotonously when ρ<0.59, i.e. themore diluted the network is, the easier
it is for cooperators to dominate the population.However, when the density is too low (ρ<0.10) the
cooperators become too vulnerable to invasion by abstainers due to the increasing difficulty of forming clusters.

Figure 3.Heatmaps of the average frequency of the strategies in the full s-b plane at the stationary state for a fully populated
network (density ρ=1). Results for the noisy imitation rule on the top, and for exclusive rational imitation rule on the bottom row.
Note that while cyclic dominance ismaintained for almost any combination of b andσ values on the top, this behaviour is easily
brokenwhen changing the imitation rule to ‘only copy if the opponent is performing better’ (bottom). In the latter case abstention
becomes the dominant strategy formost s-b pairs.

Figure 4.Heatmaps of the average frequency of cooperation (top), defection (middle) and abstention (bottom) in the full s-b plane
at the stationary state for a diluted network. All results are obtained for the noisy imitation rule.Note that at ρ=0.10 global
concentration, the average frequencies ofC andA are approximately 0.5 as a result of a bistable destination of the evolutionary process,
where the population either converges to full dominance of cooperators or abstainers.
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Also, experiments show that 0.10�ρ>0.05 quickly produces very unstableC+A states which either
converge to fullC or fullA. Notably, this behaviour cannot be seen directly from the heatmap because the
average of fullC and fullA destinations results in around 0.5 density for both strategies. The lattermay also
suggest a coexistence of these strategies, but aswe stressed, not in the present case because eitherC orA prevails
at these global concentration values. Furthermore, when ρ�0.05 cooperators always die out and abstainers
dominate in all scenarios.

Note that the percolation threshold (ρp) for this square lattice networkwith vonNeumannneighbourhood is
approximately equal to 0.59 [62, 63]. Thus, this result is of particular interest because cooperation is favoured
when the density is below the percolation threshold, which is known to be an adverse situation formaintaining
cooperation [27, 29, 30].Moreover, results infigure 4 also highlight the importance of exploring the outcomes of
theVPDgame across thewhole loner’s payoff (σ) spectrum, and not only for a specificσ=0.3 value, as was
used earlier [10, 47].

Considering the discrepancy observed infigure 3 for ρ=1, we now repeat the same experiments as above
but for the case where an agent only applies equation (1) if the opponent is performing better than itself, i.e. the
case of a fully rational imitation rule. Surprisingly, figure 5 shows that the previously observed difference for
both imitation rules diminishes whenwe consider a diluted network (ρ<1)withmobile agents.More
importantly, results show that when 1>ρ>ρp themechanismswhich support cyclic dominance in the
traditional case (i.e. for the noisy equation (1) and ρ=1) are recovered for awide range of s-b scenarios. In
fact, results for both imitation rules and ρ<1 are qualitatively the same formost settings. However, as seen in
figures 4 and 5, when the density is below the percolation threshold ρ<ρp, it is possible to observe a small shift
of ρ≈0.05 in the boundaries of the region inwhich fullC occurs. For instance, results for ρ=0.15 in figure 4
are similar to thosewhen ρ=0.10 infigure 5.Note that the bistable outcomes, where the population either
converges to a fullC or a fullA state, observed for ρ≈0.10 in thefirst case happens at ρ≈0.05 in the later case.

3.3.Micro-level analysis of the effects of dilution andmobility
In order to further explore the aforementioned phenomena, we extend our analysis of the evolutionary process
to amicro perspective. Figure 6 shows the average time course of the three strategies for afixed temptation to
defect b=1.65 and loner’s payoffσ=0.55, which is representative of the outcomes of other parameters as well.
For this scenario, when ρ=1, cyclic dominance ismaintained for the traditional case with the noisy imitation
rule, but it is easily shatteredwhen considering a rational rule.However, the difference diminishes when ρ<1.

Results show that the profile of the curves for the initial 102MC steps are very similar to scenarios which
support cyclic dominance, i.e. an initial drop followed by a quick recovery of the frequency of cooperators. This
phenomenon has also been observed in previouswork for dynamic networks [48, 64], where it was discussed
that defectors are quickly dominated by abstainers, allowing a few clusters of cooperators to remain in the
population, thenwith the lack of defectors, those cooperative clusters expand by invading the abstainers. Note
that it also explains the reason that higher values ofσ aremore beneficial in promoting cooperation (as seen in

Figure 5.Heatmaps of the average frequency of cooperation (top), defection (middle) and abstention (bottom) in thewhole s-b
plane at the stationary state for a diluted network. All results are for the fully rational imitation rule.
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figures 3, 4 and 5), i.e. abstainers have to be strong enough to protect cooperators against invasion fromdefectors
in the initial steps.Moreover, figure 6 (right) shows a clear correlation between the density ρ and the speed of the
initial inflation of abstention.

In order to distinguish between the impact ofmobility and dilution on the emergence of cooperative
behaviour and cyclic dominance, we have also investigated the case inwhich the agents are not allowed tomove.
That is, the samemodel described in section 2, but without themovement updating process. As shown in
figure 7, when ρ�ρp the frequency inwhich the agents change their strategies is extremely low, i.e. the
population quickly reaches a frozen patternwhich is very dependent on the initial configuration. Also, in line
with preceding research [29, 30], we observe that when considering the traditional noisy imitation rule (figure 7
top), dilution alone can improve the level of cooperation, where the optimal value of ρ is always above the
percolation threshold (1>ρ>ρp). In another perspective, the emergence of cyclic dominance behaviour is
diminishedwhen the agents do notmove (e.g. compare the top panels of the figures 6 and 7).

Interestingly, different phenomena occurwhenwe consider the fully rational imitation rule (figure 7
bottom). Note that dilution alone is not able tofix the evolutionarymechanismswhich support either the
emergence of cyclic dominance and the evolution of cooperation. In other words, results show thatmobility
plays a key role in diminishing the difference on the outcomes of both imitation rules (as seen infigure 6 for

Figure 6.Time course of the average frequency of cooperation (left), defection (center) and abstention (right) for different densities ρ,
temptation to defect b=1.65, and loner’s payoffσ=0.55. Results for the noisy imitation rule on the top, and the rational imitation
rule on the bottom.Note that the difference between both rules diminishes when ρ<1.

Figure 7.Time course of the average frequency of cooperation (left), defection (center) and abstention (right) for different densities ρ,
temptation to defect b=1.65, and loner’s payoffσ=0.55. Results obtained for a diluted networkwithoutmobility. The panels
compare the noisy imitation rule (top) and the rational imitation rule (bottom).
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r < 1).Moreover, it is noteworthy thatmobility allows for the full dominance of cooperation for lower values of
ρ, as well as the robust emergence of cyclic dominance for awider range of scenarios.

To advance the understanding ofmobility and dilution in the context of theVPD game,we also analyse the
spatio-temporal dynamics of the strategies for both the noisy and the rational imitation rules. Figure 8 provides
an animation for a prepared initial state where the strategies are arranged in stripes. This prepared configuration
allows us to separate cooperators fromdefectors,making it easier to observe themechanismswhich are
responsible for breaking the cyclic chainwhereA beatsD,D beatsC andC beatsA. In summary, results show
that the key difference between the dynamical rules is that, when applying the fully rational rule, defectors in the
middle of abstainers do not have the incentive to become abstainers. Hence, as discussed in section 3.1, the
rational rule produces frozenD+A states (as seen infigure 2)which cannot be observed in the noisy Fermi–
Dirac case. As a consequence, the isolated defectors trapped in the sea of abstainers inhibit the formation of
larger cooperative clusters, which in turn breaks the cyclic chain.However, whenmobility is introduced for
ρ<1, theD+A states are not a stable phase anymore.Here, there is a small stir which causes a randomdrift of
defectors. Consequently, when twodefectorsmeet they become vulnerable against invasion from abstainers.
This process would lead to a homogeneousA phase, but the latter is sensitive to the attack of cooperators. In this
way, abstainers are now able to support the emergence of cooperation, which in turn restores themechanism to
maintain the coexistence of all competing strategies.

Furthermore, regarding the phenomenon of cyclic dominance observedwhen ρ<1.0, although using a
different scenario andmethodology, our results are compatible with previous research concerningmobility in
the rock-paper-scissors game, where it is discussed thatmobility can jeopardise cyclic dominance [25, 65].
However, in the context of theVPD game, the enhancement of cooperation for ρ<ρp is counter-intuitive
because it diminishes the cooperators’ ability to form larger clusters [47]. Besides, results show that when the
agents are allowed to abstain, the population ofmobile agents will never converge to full defection. Finally, it is
noteworthy that results also echo thefindings of previous research concerning the PD andVPDgames on
weighted networks [48, 50, 51], i.e. a coevolutionarymodel inwhich the linkweights are also subject to
evolution. In parallel, the ability of avoiding interactions either byweakening the linkweight or bymoving to
another position acts as an importantmechanism to strengthen cooperators against exploitation.

4.Discussion and conclusions

Thiswork investigates the role ofmobility and dilution in a population of agents playing theVPD game, also
known as the optional PD game, in a diluted square lattice network.We propose a coevolutionarymodel where
both the agents’ strategy and position are subject to evolution. In thismodel, in addition to the commonly
applied imitation rules for the strategies [10], we also adopt amobility rule inwhich agents who are performing
worse (better) than their neighbours havemore (less) chance tomove. Thus, without loss of simplicity, this

Figure 8. Snapshots of the spatial evolution of cooperation (blue), defection (red) and abstention (green) in thefinal stationary state
with different scenarios. All simulations run for the same loner’s payoffσ=0.55, and temptation to defect b=1.65. Results for the
noisy imitation rule on the top, and the fully rational imitation rule on the bottom. An animation of the evolution of the strategies is
provided (https://doi.org/10.6084/m9.figshare.8038988).
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coevolutionary and asynchronousmodel ismore realistic than the previous ones which consider random
mobility with synchronous updating rules [47].

Research in this domain has claimed that the addition of abstention in the PD game leads to a rock-paper-
scissors type game, inwhich cooperation dominates abstention, abstention dominates defection, and defection,
in turn, dominates cooperation, which describes the so-called cyclic dominance behaviour [19]. Interestingly,
the present study shows that, in the context of the traditional VPDgame for a fully populated network [10], the
emergence of cyclic behaviour is biased by the use of the Fermi–Dirac distribution function (sigmoid) in the
strategy adoption process. This sigmoid function is often employed to allow for irrational or unjustified
decisions where agents occasionally copy the strategy of aworse or an equally performing neighbour [5, 57,
66–68].We show that when agentsmake fully rational decisions such as only copying the strategy of better
performing neighbours, the outcome changes drastically,making cyclic behaviour unsustainable inmost cases.
However, the present study shows that themechanism that supports cyclic behaviour isfixedwhen agents are
allowed tomove due to a diluted interaction space.

In fact, the noisy strategy updating rule has been applied to avoid artifact or frozen outcomes. However, in
the present studywe show that it is also possible to avoid such frozen states in amore realistic way, where, for
instance, agents are allowed tomove and change their connections over time.Hence, a deterministic rule can be
as efficient as the noisy Fermi–Dirac function if we assume a partly diluted system. Furthermore, bymeans of
robust and systematicMC simulations, results show thatmobility plays a crucial role in promoting cooperation
in theVPDgame for awide range of values of the temptation to defect b, and loner’s payoffσ, including for
scenarios of high b and density below the percolation threshold ρ<ρp, which are known to be adverse for
maintaining cooperative behaviour [27, 29, 30].

To conclude, this paper aims to bridge the gap between agentmobility and the concept of voluntary/
optional participation in social dilemmas. In addition, it provides a novel perspective for understanding the
foundations of cyclic dominance behaviour in the context of the PD gamewith voluntary participation (VPD
game).We hope this work can serve as a basis for further research on the role of abstention to advance the
understanding of the evolution of cooperation in coevolutionary spatial games.
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