
Artif Intell Rev (2007) 27:223–244
DOI 10.1007/s10462-008-9078-1

Evolving team behaviours in environments of varying
difficulty

Darren Doherty · Colm O’Riordan

Published online: 13 September 2008
© Springer Science+Business Media B.V. 2008

Abstract This paper investigates how varying the difficulty of the environment can affect
the evolution of team behaviour in a combative game setting. The difficulty of the environment
is altered by varying the perceptual capabilities of the agents in the game. The behaviours
of the agents are evolved using a genetic program. These experiments show that the level
of difficulty of the environment does have an impact on the evolvability of effective team
behaviours; i.e. simpler environments are more conducive to the evolution of effective team
behaviours than more difficult environments. In addition, the experiments show that no one
best solution from any environment is optimal for all environments.

Keywords Genetic programming · Team behaviours · Team evolution · Shooter games

1 Introduction

First-person and third-person shooter (FTPS) games belong to a popular genre of computer
games known as shooters. Shooter gaming environments involve two or more sets of agents
competing for survival in a hostile setting, where agents use some form of projectile weapon
to attack their enemy. In recent years, there has been an emergence of squad-based FTPS
games as agents competing in these games share the common goal of eliminating the opposing
team(s). The AI element of squad-based FTPS games must be tactical as the team of artificial
agents must work together to devise the most efficient and effective method to achieve their
common goal. Team tactics can be defined as the set of methods used by a team for winning
a small-scale conflict. As tactics are highly dependent on the situation (Thurau et al. 2004)
(i.e. terrain, team supplies, enemy movement/concentration, etc) it is very difficult for game

D. Doherty (B) · C. O’Riordan
Department of Information Technology, National University of Ireland, Galway, Ireland
e-mail: darren.doherty@nuigalway.ie

C. O’Riordan
e-mail: colm.oriordan@nuigalway.ie

123

224 D. Doherty, C. O’Riordan

developers not only to hardcode the team tactics themselves but also to decide when and
where it would be effective to deploy certain tactics.

Rather than attempting to code the complex behavioural systems required to allow a team
of agents to simulate intelligent tactical behaviours, we have chosen instead to evolve these
tactical team behaviours using evolutionary computation (EC) techniques. In previous work
(Doherty and O’Riordan 2006), effective teams have been evolved in a shooter gaming envi-
ronment where agents have perfect vision through a field of 180◦. In this current paper, the
robustness of this approach is tested by exploring the ability of the team agents to evolve
effective behaviours in eight different environmental settings of varying difficulty. Moreover,
it is common for FTPS games to have a number of difficulty levels in which the game can
be played. The environmental difficulty is varied by altering the field of view and viewing
distance of the agents, thereby varying their ability to perceive information from the envi-
ronment. In modern FTPS games, both the non-playable characters (NPCs) and the human
player(s) have limited fields of view and viewing distances within which information can be
perceived. To examine the effect varying the environmental difficulty has on the fitness of the
evolved teams, the same genetic program is used in all experiments. The environments used in
the experiments range from very restricted, with short viewing distances and narrow fields of
view, to very unrestricted environments, with long viewing distances and wide fields of view.

We hypothesise that the shorter the viewing distance and the narrower the field of view,
the more difficult it will be for the agents to evolve effective behaviours as their perceptual
abilities are more limited. Additionally, larger viewing distances and wider angles enable
the agents to perceive more of their environment, which should be more conducive to the
evolution of effective behaviours. We believe that these latter experiments should produce
results comparable to our previous experiments in which agents have perfect vision through
a field of 180◦. Altogether, eight experiments are undertaken over four viewing distances and
two fields of view and the results analysed.

In the remainder of this paper, some related work, the game to be played and the genetic
program to be used in the evolution will be discussed, together with the experimental setup
and a discussion of the results of the experiments.

2 Related work

2.1 Artificial intelligence in FTPS games

In early FTPS games, such as Doom (ID-Software 1994) or Quake (ID-Software 1996), the
player had very limited interactions with the NPCs in the game world. These early games
were only concerned with the player on a solo mission through an unknown world, fighting
wave after wave of NPCs. The NPCs in these early FTPS games were known as “cannon-
fodder” NPCs because their behaviour was very repetitive and predictable as deterministic
techniques, such as finite state machines and scripting, were used to define their behaviours.
These techniques were used as they are easy to understand and implement. However, the use
of deterministic techniques to implement the artificial intelligence of NPCs meant that the
behaviour of all the NPCs would be identical, which allowed players to easily predict their
actions. Since the early 2000s, developers have begun to realise the need for more intelligent
NPC behaviours in order to capture and hold the interest and attention of players. Developers
are striving to create NPCs that behave in a more humanlike and individual manner to push
the suspension of disbelief of their NPCs and prevent their behaviour from being repetitive
and predictable.

123

Evolving team behaviours in environments of varying difficulty 225

With the emergence of squad-based FTPS games in the early 2000s, game developers
have struggled to create effective systems that allow for teams of NPCs to interact, cooperate
and coordinate their behaviour intelligently. As such, developers have opted to use simple
techniques to make it appear as if the NPCs are cooperating in an intelligent manner. For
example, some game developers prevent two NPCs from shooting at the player simulta-
neously, causing them to appear to be taking turns attacking the player. This is combined
with audio cues from the agents such as shouting “cover me” when an agent goes to reload
its weapon to create the illusion of cooperative behaviour. However, using rudimentary or
“cheating” mechanisms to simulate cooperative behaviour in squad-based FTPS games is
less than ideal. Developers are still striving to create an AI architecture that allows a team
of NPCs to communicate and coordinate their behaviour in an intelligent manner, such that
they display effective group rational behaviour. This task is by no means trivial as achieving
coordination among multiple autonomous agents in any domain can be a difficult task and
FTPS games are set in very complex environments.

2.2 Evolutionary computation and games

In the past, evolutionary computation techniques have been comprehensively applied to
board games, such as: tic-tac-toe (Fogel 1993), chess endgames (Hauptman and Sipper 2005;
Lassabe et al. 2006), checkers (Fogel 2002), Go (Rosin and Belew 1995; Richards et al. 1997),
Othello (Eskin and Siegel 1999) and Monopoly (Frayn 2005) in an attempt to find optimal
playing strategies. However, EC techniques have not been used as extensively in the explo-
ration and research of artificial intelligence for computer games (commonly referred to as
game-AI). In general, the environment and range of agent behaviours in a computer game
are very complex. This means the search space will most likely be large and it will take a
long time to converge on a solution. In particular, online evolution (evolving while the game
is being played) will be slow and undesired behaviours may emerge. Developers have also
been hesitant to introduce EC techniques into their game-AI offline (during development) as
there is no guarantee the EC technique will find desirable or intelligent behaviours because
the search space is so large. However, a number of games that have incorporated EC into
their game-AI have been very successful, e.g. Lionhead Studio’s Black & White (Lionhead-
Studios 2001) or GSC Gameworld’s S.T.A.L.K.E.R.: Shadow of Cherynobyl (GSC-Game
World 2006). A genetic algorithm (GA) has been used to evolve NPCs in a first-person
shooter game to successfully dodge enemy fire (Champandard 2004). Ponsen (2004) have
used a GA off-line to design tactics for a real-time strategy game. Cole et al. (2004) success-
fully tuned an NPC’s weapon selection parameters in the game Counter-Strike (Valve 2000)
using a GA. Genetic programming (GP) has been used to evolve agent behaviours for simple
computer games, such as PacMan (Koza 1992) and Snake (Ehlis 2000). In addition, neuro-
evolution has been successfully applied to computer games to evolve adaptive behaviours of
NPCs (Stanley et al. 2005; Yannakakis and Hallam 2004).

2.3 Evolutionary computation and teamwork

Evolutionary computation techniques have been successfully applied to the evolution of team
behaviours in different simulated domains. Neuro-evolution, genetic algorithms and genetic
programming have all been used to successfully evolve team behaviours in the predator-
prey domain (Haynes and Sen 1995; Luke and Spector 1996; Yannakakis and Hallam 2004).
In addition, neuro-evolution has been used to allow a human player to evolve a team of

123

226 D. Doherty, C. O’Riordan

robots for military combat in real-time (Stanley et al. 2005) and an adapted genetic algorithm
representation was used to develop an adaptive team-oriented AI mechanism for agents in a
first-person shooter computer game (Bakkes et al. 2004).

2.3.1 Genetic programming and teamwork

Genetic programming has been a popular evolutionary computation technique for evolving
tactics and strategies for teams of agents in a variety of domains. GP was first applied to team
evolution by (Haynes et al. 1995b). With respect to team evolution, GP has been mainly used
to solve multi-agent control problems using teams of cooperating agents.

Richards et al. (2005) used a genetic program to evolve groups of unmanned air vehicles
to effectively and efficiently search an uncertain and/or hostile environment. Three different
environments of varying difficulty are used in their experiments. The first two environments
have rectangular search areas but the second also contains a single fixed hostile agent making
it more difficult. The third environment has two irregular shaped search areas and a no-fly
zone making it the most difficult environment of the three. Their results show a correlation
between the fitness of the evolved flying strategies and the difficulty of the environment.
Although, the work of Richards et al. (2005) has some similarities to our research, there are a
number of notable differences. The hostile agent in Richards et al. (2005) is fixed and cannot
navigate the map, whereas in our research the enemy agent actively searches the map to find
and destroy the team. In Richards et al. (2005), the objective of the evolving team is not to
destroy the hostile agent but to scan a search area by flying over it, whereas in our research,
the goal of the team is to eliminate the enemy agent. In addition, because the environments
used in Richards et al. (2005) are fixed and the hostile agent’s location does not change the
evolution can endow the team with instinctive knowledge about areas of the map that are dan-
gerous. In our research, this is not possible as the enemy’s desirability algorithms that govern
its behaviour are created with random biases at the start of every game and when exploring
the map agents navigate to a randomly selected node so the enemy’s behaviour/movements
varies from game to game. Moreover, the environmental difficulty in our experiments is
varied by altering the agents’ perceptual abilities rather than by using more complex maps.

Genetic programming has been used to enable a team of ants to work together to solve a
food collection problem (LaLena 1997). The ants must not only cooperate in order to reach
the food but must also work together to carry it as it is too heavy for one ant to carry alone.

Pursuit and evasion strategies for predator–prey domains have also been successfully
evolved using GP techniques (Reynolds 1993; Haynes and Sen 1995; Luke and Spector
1996). Reynolds (1993) used GP to evolve prey that exhibit a herding behaviour when con-
fronted by predators. Haynes and Sen (1995) used strongly typed genetic programming
(STGP) to evolve a team of predators to hunt a single prey. STGP is a variant of GP where
every node in the genetic program is constrained over the type of nodes it can create as child
nodes depending on its own type. Luke and Spector (1996) evolved predator strategies that
enable a pack of lions to successfully hunt gazelle (Luke and Spector 1996). In order to vary
the difficulty of the environment, the lions were given different levels of sensing ability in
each of the experiments. This is a similar method to the one used in this paper for varying the
environmental difficulty. Luke and Spector (1996) show that heterogeneous teams perform
better than homogeneous teams in their environment.

In addition, combat tactics for teams of armed forces (Doherty and O’Riordan 2006,
2007) and sporting strategies for a number of different sports (Raik and Durnota 1994; Luke
et al. 1997) have been successfully evolved using GP techniques. Raik and Durnota (1994)
conducted experiments to demonstrate evolution of cooperation and effective communication

123

Evolving team behaviours in environments of varying difficulty 227

Fig. 1 Simulation environment map

amongst a team of volleyball players. Luke et al. (1997) used a strongly typed genetic pro-
gram combined with a pseudo-heterogeneous team approach to successfully evolve team
behaviours for a team of soccer agents.

3 The gaming environment

The environment used in this work is a shooter gaming environment similar to that used in
previous research (Doherty and O’Riordan 2006, 2007) (see Fig. 1). The gaming environ-
ment is a 2-dimensional (2D) space, enclosed by four walls and is built using the Raven
game engine1 (Buckland 2005, Chap. 7). The evolved team (consisting of five agents) is
pitted against a single powerful enemy agent. Items are placed on the map at locations that
are equidistant from both the team starting points and the enemy starting point. These items
consist of health packs and a range of weapons that respawn after a set time if collected by
an agent. See Table 2 of Appendix for game specific parameters.

There are two types of agent in the simulation environment: team agents and the single
enemy agent. Both types of agent use the same underlying goal-driven architecture to define
their behaviour (Buckland 2005, Chap. 9). However, the methods used to decide which goal
to pursue at any given time are different. The single enemy agent uses hand-coded desirability
algorithms associated with each goal to decide on its course of action,2 whereas team agents
use an evolved decision-making tree to decide which goal to pursue at any given time. Team
agents begin the game with the least powerful weapon in the environment but have unlimited

1 The Raven game engine source code can be downloaded from the following url: http://www.wordware.com/
files/ai/Buckland_AISource.zip
2 If the enemy does not know the location of the team agents or items, its most desirable goal will be to
explore the map. Thus, causing it to actively seek out their locations rather than wait. For an explanation of
the desirability algorithms used see Appendix.

123

http://www.wordware.com/files/ai/Buckland_AISource.zip
http://www.wordware.com/files/ai/Buckland_AISource.zip

228 D. Doherty, C. O’Riordan

ammunition for it, so agents always have the ability to attack. The single enemy has five times
the health of a team agent and the most powerful weapon in the environment with infinite
ammunition. For a list of weapons and their properties see Table 3 in Appendix.

There is also a degree of randomness inherent in the gaming environment. Random biases
are used when creating each desirability algorithm for the enemy agent, influencing the
enemy’s behaviour and a random degree of noise can be added to an agent’s aim depending
its aim accuracy. For these experiments, agents are given perfect aim accuracy to reduce the
amount of randomness in the environment. However, bullets fired can still miss their target
if the target moves before the bullet reaches it or if the weapon is fired outside of its ideal
range. Note that weapons have different ideal ranges within which they are more effective
and bullets for different weapons have different properties, such as travelling velocity, mass,
spread, etc.

All agents have a limited range within which they can visually perceive information in
their environment. An agent’s visual capability is defined by a field of view and a viewing
distance. For these experiments, the enemy can see twice as far as team agents but the fields
of view of both agent types are equal.

Both types of agent have a memory which allows them to remember information they
perceive in their environment. Any dynamic information, such as ally or enemy positions, is
forgotten after a specified time (5 s for these experiments). However, static information, such
as the location of items, is not forgotten if perceived, as their location does not change for
the duration of the game.3

If the enemy is sensed by a team agent, the enemy is automatically selected as the team
agent’s target as there is only one enemy. However, as more than one team agent can be
sensed by the enemy agent at any given time, the enemy chooses the closest team agent
recently sensed as its target.

4 The genetic program

The genetic program used to evolve the decision-making trees for the team agents is similar
to that used in our previous research (Doherty and O’Riordan 2006). The entire team of five
agents is viewed as one chromosome, so team fitness, crossover and mutation operators are
applied to the team as a whole. The decision making trees defining the behaviour of each of
the five agents are derived from different parts of the team chromosome, so evolved teams
are heterogenous. For a list of parameter values specific to the genetic program see Table 4
in Appendix.

A strongly typed genetic program comprising five node sets is adopted. In STGP, the
initialisation process and genetic operators must only allow syntactically correct trees to be
produced. The node sets are similar to those in previous research (Doherty and O’Riordan
2006). However, a number of new nodes have been added to accommodate the limited view-
ing capabilities of the agents. For example, a can_see_enemy node is added to the condition
node set to allow an agent to make decisions based on when the enemy has become visible.
For a complete list of nodes used in the experiments see Table 5 in Appendix. In total, there
are 50 nodes across the five node sets that can appear in a GP tree.

3 It is not possible for evolution to endow agents with knowledge of where to look for items as the genetic
program does not contain directional nodes such as “go left” or “go right”. Moreover, if an item’s location is
unknown, the “explore” node sends the agent to a random map location.

123

Evolving team behaviours in environments of varying difficulty 229

4.1 Fitness calculation

The fitness function takes into account: the remaining health of both the enemy agent and
team agents, the length of time the games last and the length of the chromosome (to prevent
bloating of the trees).

RawFitness =
(

(EW ∗ (Games ∗ T Size ∗ Max Health − E H) + AH)

Games ∗ T Size ∗ Max Health

)

+
(

AvgGameT ime

Scaling ∗ MaxGameT ime

)

Std Fitness = (Max RawFitness − RawFitness) +
(

Length

LengthFactor

)

where Games is the number of games played per evaluation (set to 20 for these experiments),
T Size is the number of agents in the evolving team (i.e. five), Max Health is the maximum
health a team agent in the game can have, E H and AH are the total amount of health remain-
ing for the enemy agent and for all five team agents respectively, AvgGameT ime is the
average duration of the evaluation games (where game duration is counted as the number
of game updates), Scaling is a variable to reduce the impact of game time on fitness (set
to four), MaxGameT ime is the maximum duration of a game (set to 5,000 game updates
for these experiments), Max RawFitness is the maximum value possible RawFitness can
hold, Length is the length of the chromosome and LengthFactor is a parameter used to
limit the influence the length of the chromosome has on the fitness (set to 5,000).

More importance is attached to the change in the enemy agent’s health than the corre-
sponding change in the team’s health as the tactics are evolved to be capable of defeating
the enemy. EW is a weight that accounts for this (set to five for these experiments). Longer
games are also favoured to prevent teams who are capable of surviving the enemy’s attack
from dying off in the earlier generations. Once the RawFitness of the team is calculated,
the chromosome length is taken into account and the fitness is inverted such that fitness val-
ues closer to zero are better. Using this fitness function encourages evolution of aggressive
behaviour where teams actively seek out to eliminate the enemy rather than simply avoid it.

4.2 Selection

There are two forms of selection used in these experiments. The first is a form of elitism where
m of the best n chromosomes from each generation are reproduced unchanged into the next
generation. Retaining 2–5% of the population using this form of elitism has been known to
give good results (Buckland and Collins 2002, Chap. 5). For these experiments, three copies
of the best individual and two copies of the next best individual are retained in this man-
ner. The second method of selection is roulette wheel selection, which selects chromosomes
from the current generation probabilistically based on the fitness of the chromosomes. Any
chromosomes selected in this manner are subjected to crossover and mutation (given some
probability of crossover and mutation respectively). To increase diversity, there is also a 2%
chance for new chromosomes to be created and added to the population each generation.

123

230 D. Doherty, C. O’Riordan

Fig. 2 Sample crossover operation between two team chromosomes

4.3 Crossover

The crossover operator used is specifically designed for team evolution (Haynes et al. 1995a).
At the start of each crossover operation a random T si ze bit mask is selected that decides which
of the team agents in the parent chromosomes are to be altered during the crossover. A ‘1’ in
the mask indicates that the agent at that position is copied directly into the child chromosome
and a ‘0’ indicates that the agent is to take part in crossover with the corresponding agent of
the other parent chromosome (see Fig. 2). A random crossover point is then chosen within
each agent to be crossed over. The node at the crossover point in each corresponding agent
of the two parents must be from the same node set in order for a valid crossover to take place.

4.4 Mutation

Two forms of mutation are used in these experiments, one to allow good subtrees to spread
within a team and the other to help maintain diversity in the population. The former muta-
tion method, known as intra-team mutation, randomly chooses two agent trees from the same
team chromosome and swaps two randomly selected subtrees between the agents (see Fig. 3).
Similar to the crossover operation, the root nodes of the subtrees must be from the same node
set in order for the mutation to be valid.

The second form of mutation is known as swap mutation and is used to help maintain diver-
sity in the population. It involves randomly selecting a subtree from the team chromosome
and replacing it with a newly created random tree (see Fig. 4).

5 Experimental setup

These experiments investigate how varying the difficulty of the environment can affect the
evolution of team behaviour in a 2D shooter game setting. The difficulty of the environment is

123

Evolving team behaviours in environments of varying difficulty 231

Fig. 3 Sample intra-team mutation operation between two team agents

Fig. 4 Sample swap mutation operation

varied by altering the evolving agents’ perceptual capabilities. Experiments are set up for two
fields of view (90 and 180◦) and four viewing distances (50, 200, 350 and 500 pixels). Eight
experiments are used to investigate the evolution of team behaviours in these environments.
Maximum and minimum viewing distances are based on the size of the grid. The maximum
viewing distance of the agents is set to 500 pixels and the minimum viewing distance is set
to 50 pixels for these experiments. Intermediate distances are then chosen as equally spaced
distances between 50 and 500 pixels. With a viewing distance of 500 pixels, the team agents
can see the location of the enemy agent as well as the locations of a number of items from
their starting positions. This makes the game easier as agents do not have to spend time
searching for game objects. In the most restrictive environments, where viewing distance is
50 pixels, agents can only see what is directly ahead, making it very difficult for them to
locate game objects in their environment.

The enemy viewing distance is scaled relative to the viewing distance of the team agents.
As there are five team agents and only the one enemy agent, the collective viewing range of
the team covers a much larger portion of the map than that of a single agent. Therefore, it
was decided to allow the enemy’s viewing distance to be twice that of a team agent.4 Figure 5
shows the eight environmental setups used for these experiments.

Twenty separate evolutionary runs are performed in each of the eight environments. In
each of the runs, 100 team chromosomes are evolved over 100 generations. Each team
evaluation comprises 20 games, whose results averaged in order to obtain a more accurate
measure of performance as there is some randomness in the environment (see Sect. 3). The
best performing team from each of the runs is recorded.

4 For a viewing distance of 1,000 pixels, the enemy will have perfect vision within its field of view as 1,000
pixels is greater than both dimensions of the map. Note that an enemy viewing distance of 700 pixels is greater
than the height of the map but not the width.

123

232 D. Doherty, C. O’Riordan

Fig. 5 Experimental setups for various fields of view and viewing distances

Each recorded team is then tested more extensively using a larger number of games to
obtain a more accurate measure of its performance. The validation tests involve evaluating
each recorded team’s performance over 1,000 games and basing the team’s fitness score on
their average performance over the 1,000 games. The number of games won, lost and drawn
are also recorded. Once these tests are performed for each of the recorded teams, the max-
imum, minimum, average and standard deviation of the team’s fitness and the maximum,
minimum and average of the number of wins, losses and draws are found for the 20 recorded
teams in each of the eight experiments. These results are then analysed to see if environmental
difficulty has a significant impact on the evolution of effective team behaviour.

123

Evolving team behaviours in environments of varying difficulty 233

Fig. 6 Validation results for team fitness over 1,000 games

An additional test is then carried out to observe how effectively the best recorded teams
from each environment perform in all other environments. This is implemented by taking the
best performing team from each environment and evaluating their performance over 1,000
games in each of the other seven environments. The number of wins that each team achieves
out of the 1,000 games is recorded for each environment and the results are analysed.

6 Results

The results of the experiments show that the level of difficulty of the environment does have
an impact on the genetic program’s ability to evolve effective team behaviours. Figure 6 shows
the maximum, minimum, average and standard deviation of fitness for the twenty recorded
teams in each of the eight environments over 1,000 games. Note that fitness values closer to
zero are better. As is evident from Fig. 6, there is a correlation between the agent’s viewing
range and the genetic program’s ability to evolve effective team behaviours. The results for
the environments where the field of view is 90◦ follow a similar trend to those of environ-
ments where the field of view is 180◦. This is understandable as the field of view of both
the enemy and team agents are equivalent in each of the eight experiments. Thus, varying
the field of view does not have as much of a bearing on the difficulty of the environment as
varying the viewing distance. The Best bar shows the fitness of the best performing team in
each environment. A steady improvement can be observed in the performance of the best
evolved team as the environmental difficulty decreases. Similarly, the average fitness of all
twenty recorded teams in any one environment (shown here by the Average bar) improves
as the environments become less difficult. The worst fitness of any of the 20 recorded teams
from each environment is shown by the bar labelled Worst. Although, the worst fitnesses

123

234 D. Doherty, C. O’Riordan

Fig. 7 Maximum number of games won by a team in each environment

generally follow a similar trend, some of the worst teams in the less difficult environments
perform more poorly than some from the more difficult environments. This can be attributed
to outliers in the data. Statistical tests show a statistically significant increase in fitness as the
viewing distance of agents increase for a confidence interval of 95% (see Fig. 9 in Appendix).

Figure 7 shows the number of games won by the best performing recorded team in each
of the eight environments. The results from Fig. 7 show that environments where the field of
view is 90◦ follow a similar course to those for environments where the field of view is 180◦.
Generally, as the level of difficulty of the environment decreases, the number of games won
by the best evolved team increases. This follows a similar trend to the fitness values shown
in Fig. 6. The best fitness in each of the environments gradually improves as the environment
becomes less difficult, i.e. as the viewing distance of agents increase. In the most difficult
environments, where the viewing distance of agents is 50 pixels, the maximum number of
games won by any of the recorded teams is less than 8% of games played. In contrast, the
maximum number of games won by the best evolved team in the least difficult environments,
where the viewing distance of agents is 500 pixels, is over 92% of games played.

As mentioned earlier, the results are comparable for both environments with 90 and 180◦
fields of view, as there is a steady increase in the number of games won as the viewing
distance of the agents in the environment increases. Overall, the results of the experiments
with the 180◦ field of view are generally slightly better, with the exception of the experiment
where the viewing distance is 50 pixels. We believe this is because 50 pixels is too small a
distance to benefit from the larger viewing angle but the enemy’s viewing distance of 100
pixels in this environment does benefit, making it easier for the enemy to dispose of the team.
Hence, this environment can be regarded as the most difficult of all eight environments.

Figure 8 shows the average number of wins, losses and draws, out of 1,000 games for
all twenty recorded teams in each of the eight environments. There is a steady trend in the
proportion of wins, losses and draws of teams as the environmental difficulty changes. In
both, environments where team agents have a field of view of 90◦ and environments where
the agents’ field of view is 180◦, there is a steady increase in the proportion of wins of the
evolved teams as the level of difficulty of the environment decreases. In the most difficult
environment, where agents have a field of view of 180 and viewing distance of 50, the pro-
portion of wins of all 20 recorded teams is only 1.15% of games played. If the viewing

123

Evolving team behaviours in environments of varying difficulty 235

Fig. 8 Average number of games won, lost and drawn by all recorded teams

distance is increased to 200 or 350, the proportion of wins improves to 18.45% of games
played or 59.4% of games played, respectively. In the least difficult environment, with field
of view 180 and viewing distance 500, the proportion of wins of the twenty recorded teams
is 71.6%, which is a huge improvement on the average win percentage of teams recorded
from the most difficult environment (i.e. 1.15%). This shows that the environmental difficulty
has a significant bearing on the ability of the genetic program to evolve effective behaviours
capable of consistently defeating the enemy.

6.1 Testing generality of evolved solutions

An additional experiment is carried out to test the generality of the evolved teams. It involves
taking the very best performing team from each environment and evaluating their performance
over 1,000 games in each of the other seven environments so as to assess how effectively the
best teams perform in all environments. The number of wins that each team achieves in each
environment is recorded (out of the 1,000 games) and the results are analysed. Table 1 shows
the number of wins achieved by the best evolved team from each environment when placed
in each different environment.

In Table 1, Team090050 refers to the best genetic program (i.e. team) evolved in the envi-
ronment where the agents’ field of view is 90 and team agent viewing distance is 50 and so
forth for the other teams. Similarly, Env180200 refers to the environment in which the teams
are tested where agents’ field of view is 180◦ and agents’ viewing distance is 200 pixels and so
on. The results displayed in Table 1 show that the best performing team in each environment
is the one that has been evolved in that environment (following the diagonal from top left to
bottom right of table). This illustrates two things: one, that the genetic program is succeeding
at finding an optimal solution in each environment and two, that no one evolved solution
is optimal for all environments. This essentially means that teams cannot be evolved in the

123

236 D. Doherty, C. O’Riordan

Ta
bl

e
1

N
um

be
r

of
ga

m
es

w
on

by
th

e
be

st
ev

ol
ve

d
te

am
s

in
al

le
nv

ir
on

m
en

ts

E
nv

09
00

50
E

nv
09

02
00

E
nv

09
03

50
E

nv
09

05
00

E
nv

18
00

50
E

nv
18

02
00

E
nv

18
03

50
E

nv
18

05
00

To
ta

l

Te
am

09
00

50
78

70
17

9
33

11
51

78
11

51
1

Te
am

09
02

00
21

30
7

76
1

76
5

11
25

6
68

3
86

6
3,

67
0

Te
am

09
03

50
17

11
2

77
9

75
8

4
79

46
1

80
2

3,
01

2

Te
am

09
05

00
9

13
6

67
9

92
8

3
13

0
47

2
83

3
3,

04
5

Te
am

18
00

50
62

11
9

39
0

20
18

11
5

22
5

12
96

1

Te
am

18
02

00
6

19
0

74
8

89
9

0
33

9
80

3
91

3
3,

89
8

Te
am

18
03

50
16

12
5

61
8

62
1

2
22

1
92

6
79

9
3,

32
8

Te
am

18
05

00
5

86
52

8
74

2
1

12
8

67
6

97
7

3,
14

3

To
ta

l
21

4
1,

14
5

4,
68

2
4,

76
6

50
1,

31
9

4,
32

4
5,

21
3

123

Evolving team behaviours in environments of varying difficulty 237

simpler, less difficult environments and used as effective teams in the more difficult environ-
ments. The last row in the table shows the total number of wins that all eight teams managed
to achieve in each environment. The values in this row are a crude indicator of environmental
difficulty as the lower the total number of wins achievable by all the best performing teams
in any environment, the greater the difficulty of that environment. For example, the highest
total number of wins are achieved in the least difficult environment, where teams manage to
win 5213 out of a total of 8,000 games. Table 1 also supports our earlier assumption that the
most difficult environment is the one where agents’ field of view is 180 and viewing distance
is 50 pixels, as all the best teams perform very poorly in this environment, winning only 50
of the 8,000 games played.

Most teams evolved in the more difficult environments perform better in the less difficult
environments, as would be expected. However, the solutions evolved in the most difficult
environments (i.e. where agent viewing distance is 50) do not perform well in the least diffi-
cult environments (where agent viewing distance is 500). One possible reason for this is that
the solutions evolved in the more restrictive environments do not evolve to take advantage
of the larger viewing distances offered by the least difficult environments and the enemy
(having perfect vision in these environments) can easily overcome them.

The most general teams across all environments are those evolved in the environments
where agents’ viewing distance is 200 pixels. Table 1 shows that these teams win 3,670 and
3,898 games out of a total of 8,000 across all environments for the 90◦ field of view and 180◦
field of view environments, respectively. This can be attributed to these teams evolving in a
fairly restrictive environment (having a viewing distance of 200 pixels), and when played in
the less difficult environments where agents’ viewing distance is 350 pixels and 500 pixels,
they perform even better than when in their native, more difficult environment. Although
their evolved tactics perform better in the less difficult environments, they do not perform as
well as the native teams evolved in these environments. This is intuitive as the teams evolved
in any particular environment would be evolved to specialise in that environment, and thus
should perform better.

7 Conclusions

This paper explores the effect that varying the environmental difficulty has on a genetic pro-
gram’s ability to evolve effective team behaviours in a 2D shooter gaming environment. The
gaming environment in which the game is played and genetic program to be used in the evo-
lution are discussed, together with the experimental setup and the results of the experiments.

The results displayed in Figs. 6, 7 and 8, clearly indicate that the level of difficulty of the
environment affects the evolution of effective team behaviours. The performance of evolved
teams improves as the difficulty of the environment decreases. In the very difficult environ-
ments, where agents’ viewing range is very restricted, teams perform very poorly. The genetic
program is unable to evolve good solutions capable of consistently defeating the enemy as
the environment is too difficult. In contrast, in the less difficult environments, the evolved
teams perform very well as the genetic program is able to evolve effective team behaviours.
As mentioned earlier, Table 1 shows that the best evolved team from each environment is at
worst a local optimum solution. The fact that the best evolved solution in the more difficult
environments perform so poorly leads us to believe that they are not the global optima for
these environments.

In future experiments, we wish to use a technique such as fitness distance correlation
(Jones and Forrest 1995) or negative slope coefficient (Vanneschi et al. 2004, 2006) to more

123

238 D. Doherty, C. O’Riordan

formally analyse the level of problem difficulty inherent in each of these environments. The
fitness distance correlation technique requires the global optimum in the solution space to be
known a priori in order to calculate the difficulty of the problem space. Although the global
optimum is not known in advance for these environments, the best known solution can be
used. However, this is not ideal, especially for the more difficult environments where the best
known solution is still very poor. Negative slope coefficient, on the other hand, is a technique
that does not require the global optimum to be known beforehand to calculate the difficulty
of a problem. Additionally, negative slope coefficient has been shown to be successful at
correctly analysing the difficulty of a number of well known benchmark problems (Poli and
Vanneschi 2007; Vanneschi et al. 2004, 2006).

In addition to formally analysing the problem difficulty, we also wish to explore the effects
communication between agents could have in the evolution of team behaviours, as commu-
nication would be potentially very useful in environments where agents’ viewing range is
more restricted. Agents could share information and perceive the environment as a team
rather than individually. The position of the enemy or other game objects could be commu-
nicated amongst team agents, which could allow for much more effective team behaviours
to evolve. We also wish to analyse the actual behaviours evolved to see if there are common
properties in the behaviours of teams evolved in similar environments.

Acknowledgements The primary author would like to acknowledge the Irish Research Council for Science,
Engineering and Technology (IRCSET) for their assistance through the Embark initiative. The authors would
also like to thank the reviewers of the paper for their insightful comments and recommendations.

Appendix

The following is a list of the desirability algorithms used by the single enemy agent to
determine its course of action:

–

Desirabili t yGet Health = a ∗
(

1 − Health

Distance_to_Health

)

where a is a random bias in the range 0.5 to 1.5, Health is the current health of the agent
and Distance_to_Health is the distance the agent is to the nearest health pack (if this
is known). If the agent does not know the location of any health packs the desirability
returned from this equation will be zero. Note that if an agent’s health becomes low and
the location of health packs is unknown, the agent’s highest desirability will be to explore
the map.

–

Desirabili t yAttack = b ∗ T otal_W eapon_Strength ∗ Health

where b is a random bias in the range 0.5 to 1.5, T otal_W eapon_Strength is the pro-
portion of ammunition the agent has in its inventory for all weapons as a fraction of the
total amount of ammunition it can carry for the all weapons and Health is the current
health of the agent. The agent will only want to attack its enemy if the agent’s attacking
ability (i.e. T otal_W eapon_Strength) and its health level are both relatively high.

–

Desirabili t yGetW eapon = c ∗
(

Health ∗ (1 − W eapon_Strength)

Distance_to_W eapon

)

123

Evolving team behaviours in environments of varying difficulty 239

Table 2 List of game specific parameters used in experiments and their values

Game parameter Value

Team agent max health 50

Enemy agent max health 250

Health recovered from health pack 25

Team agent starting weapon Blaster (unlimited ammunition)

Enemy agent starting weapon Railgun (unlimited ammunition)

Map grid width 41 nodes

Map grid height 26 nodes

Map edge length 20

Weapon selection frequency 100 per second

Goal appraisal update frequency 200 per second

Targeting update frequency 100 per second

Trigger update frequency 400 per second

Vision update frequency 200 per second

Update interval time 0.0003333 s

Frame rate 3000 per second

Agent reaction time 0.004 s

Agent aim persistence 0.02 s

Agent aim accuracy 0.0 radians

Agent memory span 0.1 s

Separation weight for steering force 10.0

Wall avoidance weight for steering force 10.0

Wander weight for steering force 1.0

Seek weight for steering force 0.5

Arrive weight for steering force 1.0

View distance for separation 15.0

Wall detection feeler length 20

Waypoint seek distance 5

Default giver trigger range 10

Health respawn delay 0.2 s

Weapon respawn delay 0.3 s

Note that all game parameters relating to time and frequency in Tables 2 and 3 have been scaled in order
to speed up the games so the genetic program runs efficiently. Games must be run at 60 frames per second
and all parameters relating to time and frequency must be adjusted accordingly in order for games to be
visualised.
Note also, in Table 5, if the position of the enemy or nearest ally is unknown then any environment nodes that
require these by default will return a very large number (i.e. Max Double) and any position nodes that require
them will return a marker to tell the agent to explore the map

where c is a random bias in the range 0.5 to 1.5, W eapon_Strength is the proportion of
ammunition the agent has in its inventory as a fraction of the total amount of ammunition
it can carry for the current weapon and Distance_to_W eapon is the distance the agent
is to the nearest ammunition pack for that weapon (if this is known). If the agent does not
know the location of any ammunition packs for this weapon the desirability returned from
the equation will be zero. Note that each weapon that ammunition can be retrieved for

123

240 D. Doherty, C. O’Riordan

Table 3 List of weapon
parameters used in games and
their values

Weapon parameter Value

Blaster firing frequency 150 per second

Blaster ideal range 50

Blaster sound range 100

Blaster bolt max speed 5

Blaster bolt damage 1

Rocket launcher firing frequency 75 per second

Rocket launcher default rounds 15

Rocket launcher max rounds carried 50

Rocket launcher ideal range 100

Rocket launcher sound range 200

Rocket blast radius 20

Rocket max speed 3

Rocket damage 10

Railgun firing frequency 50 per second

Railgun default rounds 15

Railgun max rounds carried 50

Railgun ideal range 200

Railgun sound range 150

Railgun slug max speed 5,000

Railgun slug damage 10

Shotgun firing frequency 50 per second

Shotgun default rounds 15

Shotgun max rounds carried 50

Number of pellets in shotgun shell 10

Shotgun spread 0.05

Shotgun ideal range 100

Shotgun sound range 150

Pellet max speed 5,000

Pellet damage 1

Table 4 List of genetic program
specific parameters used in
experiments and their values

GP parameter Value

Population size 100

Number of generations 100

Games per evaluation 20

Creation type Ramped half and half

Creation probability 0.02

Crossover probability 0.8

Intra-team mutation probability 0.1

Swap mutation probability 0.1

Maximum depth for creation 10

Maximum depth for crossover 17

123

Evolving team behaviours in environments of varying difficulty 241

Table 5 Complete list of nodes used in experiments

Node Node set Description

If(C , A1, A2) Action If C is non-zero execute action A1 else execute A2

Move_To(P) Action Move to position P

Hunt_Target() Action Search for enemy by first trying last known position

Attack_Target() Action If enemy recently sensed attack else explore map

Flee() Action Continue to track enemy’s position while retreating

Dodge_Sideways() Action Strafe side to side to avoid enemy fire

Get_Health() Action Search the map for a health pack & retrieve it

Get_Shotgun() Action Search map for shotgun ammunition & retrieve it

Get_Railgun() Action Search map for railgun ammunition & retrieve it

Get_Rockets() Action Search map for rocket launcher ammo & retrieve it

Explore() Action Explore map by wandering to a random location

Explore_Cautiously() Action Keep looking around while move to random location

Wait() Action Wait at the current location

Wait_Cautiously() Action Wait at the current location while looking around

Greater(N1, N2) Condition Return 1 if number N1 greater than N2 else 0

Smaller(N1, N2) Condition Return 1 if number N1 less than N2 else 0

And(C1, C2) Condition Return 1 if both conditions C1 and C2 true

Or(C1, C2) Condition Return 1 if either condition C1 or C2 true

Not(C1) Condition Return 1 if condition C1 is false, 0 otherwise

Behind_Enemy() Condition Return 1 if agent is behind and facing the enemy

Similar_Ally_Facing() Condition Return 1 if facing same direction as nearest ally

Can_See_Enemy() Condition Return 1 if agent can currently see the enemy

Enemy_Can_See_Me() Condition Return 1 if agent can see the enemy looking at it

Target_Present() Condition Return 1 if agent can remember sensing enemy

Distance_Enemy() Environment Return distance to enemy if known, else MaxDouble

Distance_Ally() Environment Return distance to nearest ally if known

Health() Environment Return current health of the agent

Enemy_Health() Environment Return current health of the enemy if known

Shotgun_Ammo() Environment Return agent’s ammunition supplies for shotgun

Railgun_Ammo() Environment Return agent’s ammunition supplies for railgun

Rocket_Ammo() Environment Return agent’s ammo supplies for rocket launcher

Recent_Damage_Inflicted() Environment Returns amount of damage recently incurred by agent

Position_Behind_Enemy() Position Return position directly behind enemy if known

Position_Enemy() Position Return position of enemy if known

Position_Ally() Position Return position of nearest ally if known

Add(N1, N2) Number Add number N1 to N2 and return result

Subtract(N1, N2) Number Subtract number N2 from N1 and return result

Multiply(N1, N2) Number Multiply number N1 by N2 and return result

Divide(N1, N2) Number Divide number N1 by N2 and return result

Modulus(N1, N2) Number Divide number N1 by N2 and return remainder

Power(N1, N2) Number Return N1 raised to power of N2

123

242 D. Doherty, C. O’Riordan

Table 5 continued

Node Node set Description

Constant1() Number Returns the number 1

Constant2() Number Returns the number 2

Constant3() Number Returns the number 3

Constant5() Number Returns the number 5

Constant10() Number Returns the number 10

Constant100() Number Returns the number 100

Constant200() Number Returns the number 200

Constant500() Number Returns the number 500

Constant1,000() Number Returns the number 1,000

Fig. 9 T -test results for recorded teams from environments with similar fields of view

(i.e. the shotgun, railgun and rocket launcher weapons) each have their own GetW eapon
desirability algorithm associated with them. Moreover, if the agent does not know the
location of ammunition packs for any of the weapons and if its health is ok, the agent’s
highest desirability will be to explore the map.

–

Desirabili t yExplore = d

where d is a constant, set to 0.5 for these experiments. An agent will only explore the
map if all other desirability algorithms return low values.

References

Bakkes S, Spronck P, Postma EO (2004) Team: the team-oriented evolutionary adaptability mechanism. In:
Rauterberg M (ed) Proceedings of the third international conference on entertainment computing (ICEC
2004). Lecture notes in computer science, vol 3166. Springer, pp 273–282

Buckland M (2005) Programming game AI by example. Wordware Publishing, Inc., Plano, TX
Buckland M, Collins M (2002) AI techniques for game programming. Premier Press, Portland, OR
Champandard AJ (2004) AI game development: synthetic creatures with learning and reactive behaviours.

New Riders Publishing, Thousand Oaks, CA
Cole N, Louis S, Miles C (2004) Using a genetic algorithm to tune first–person shooter bots. In: Congress on

evolutionary computation 2004, vol 1, pp 139–145

123

Evolving team behaviours in environments of varying difficulty 243

Doherty D, O’Riordan C (2006) Evolving tactical behaviours for teams of agents in single player action games.
In: CGAMES 2006 9th international conference on computer games: AI, animation, mobile, educational
& serious games, pp 121–126

Doherty D, O’Riordan C (2007) A phenotypic analysis of gp-evolved team behaviours. In: GECCO ’07: Pro-
ceedings of the 9th annual conference on genetic and evolutionary computation. ACM Press, New York,
NY, USA, pp 1951–1958

Ehlis T (2000) Application of genetic programming to the “snake game”. GamedevNet 1(175), http://www.
gamedev.net/reference/articles/article1175.asp. Accessed 9th October 2003

Eskin E, Siegel E (1999) Genetic programming applied to othello: introducing students to machine learning
research. In: SIGCSE ’99: The proceedings of the thirtieth SIGCSE technical symposium on computer
science education. ACM Press, New York, NY, USA, pp 242–246

Fogel DB (1993) Using evolutionary programming to create neural networks that are capable of playing
tic-tac-toe. In: Proceedings of the American power conference, IEEE, pp 875–879

Fogel DB (2002) Blondie24: playing at the edge of AI. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA

Frayn C (2005) An evolutionary approach to strategies for the game of monopoly. In: Proceedings of the 2005
IEEE symposium on computational intelligence and games (CIG05)

GSC-GameWorld (2006) S.T.A.L.K.E.R.: Shadow of Chernobyl. http://www.stalker-game.com/en/
Hauptman A, Sipper M (2005) Gp-endchess: using genetic programming to evolve chess endgame players.

In: Proceedings of the 8th European conference on genetic programming, pp 120–131
Haynes T, Sen S (1995) Evolving behavioral strategies in predators and prey. In: Sen S (ed) International

joint conference on artificial intelligence-95 workshop on adaptation and learning in multiagent systems..
Morgan Kaufmann, Montreal, Quebec, Canada pp 32–37

Haynes T, Sen S, Schoenefeld D, Wainwright R (1995) Evolving a team. In: Siegel EV, Koza JRWorking
notes for the AAAI symposium on genetic programming. AAAI, Cambridge, MA

Haynes T, Wainwright R, Sen S (1995b) Evolving cooperation strategies. In: Lesser V (ed) Proceedings of the
1st international conference on multi-agent systems. MIT Press, San Francisco, CA, p 450, citeseer.ist.
psu.edu/haynes94evolving.html

ID-Software (1994) Doom. http://www.idsoftware.com/
ID-Software (1996) Quake. http://www.idsoftware.com/
Jones T, Forrest S (1995) Fitness distance correlation as a measure of problem difficulty for genetic algorithms.

In: Eshelman L (ed) Proceedings of the 6th international conference on genetic algorithms. Morgan Ka-
ufmann, San Francisco, CA, pp 184–192

Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT
Press, Cambridge, MA, USA

LaLena M (1997) Teamwork in genetic programming. Master’s thesis, Rochester Institute of Technology,
School of Computer Science and Technology

Lassabe N, Sanchez S, Luga H, Duthen Y (2006) Genetically programmed strategies for chess endgame. In:
GECCO ’06: Proceedings of the 8th annual conference on genetic and evolutionary computation. ACM
Press, New York, NY, USA, pp 831–838

Lionhead-Studios (2001) Black & White. http://www.lionhead.com/bw/
Luke S, Spector L (1996) Evolving teamwork and coordination with genetic programming. In: Koza JR,

Goldberg DE, Fogel DB, Riolo RL (eds) Genetic programming, 1996: Proceedings of the 1st annual
conference. MIT Press, Stanford University, CA, USA pp 150–156

Luke S, Hohn C, Farris J, Jackson G, Hendler J (1997) Co-evolving soccer softbot team coordination with
genetic programming. In: International joint conference on artificial intelligence-97 first international
workshop on RoboCup. Nagoya, Japan

Poli R, Vanneschi L (2007) Fitness-proportional negative slope coefficient as a hardness measure for genetic
algorithms. In: GECCO ’07: Proceedings of the 9th annual conference on genetic and evolutionary
computation. ACM Press, New York, NY, USA, pp 1335–1342

Ponsen M (2004) Improving adaptive game-AI with evolutionary learning. Master’s thesis, Delft University
of Technology

Raik S, Durnota B (1994) The evolution of sporting strategies. In: Stonier RJ, Yu XH (eds) Complex systems:
mechanisms of adaption. IOS Press, Amsterdam, The Netherlands pp 85–92

Reynolds CW (1993) An evolved, vision-based behavioral model of coordinated group motion. In: Proceed-
ings of the 2nd international conference on from animals to animats 2: simulation of adaptive behavior.
MIT Press, Cambridge, MA, USA, pp 384–392

Richards N, Moriarty D, McQuesten P, Miikkulainen R (1997) Evolving neural networks to play Go. In:
Proceedings of the 7th international conference on genetic algorithms. East Lansing, MI

123

http://www.gamedev.net/reference/articles/article1175.asp
http://www.gamedev.net/reference/articles/article1175.asp
http://www.stalker-game.com/en/
citeseer.ist.psu.edu/haynes94evolving.html
citeseer.ist.psu.edu/haynes94evolving.html
http://www.idsoftware.com/
http://www.idsoftware.com/
http://www.lionhead.com/bw/

244 D. Doherty, C. O’Riordan

Richards MD, Whitley D, Beveridge JR, Mytkowicz T, Nguyen D, Rome D (2005) Evolving cooperative
strategies for uav teams. In: GECCO ’05: Proceedings of the 7th annual conference on genetic and
evolutionary computation. ACM Press, New York, NY, USA, pp 1721–1728

Rosin CD, Belew RK (1995) Methods for competitive co-evolution: finding opponents worth beating. In: Esh-
elman L (ed) Proceedings of the 6th international conference on genetic algorithms.. Morgan Kaufmann,
San Francisco, CA pp 373–380

Stanley KO, Bryant BD, Miikkulainen R (2005) Evolving neural network agents in the nero video game. In:
Proceedings of the IEEE 2005 symposium on computational intelligence and games (CIG05)

Thurau C, Bauckhage C, Sagerer G (2004) Imitation learning at all levels of game–AI. In: Proceedings of the
international conference on computer games, Artificial Intelligence, Design and Education, pp 402–408

Valve (2000) Counter strike. http://www.counter-strike.com
Vanneschi L, Clergue M, Collard P, Tomassini M, Verel S (2004) Fitness clouds and problem hardness in

genetic programming. In: KD et al (ed) GECCO ’04: Proceedings of the 6th annual conference on
genetic and evolutionary computation. Lecture notes in computer science, vol 3103. Springer-Verlag,
Seattle, WA, USA, pp 690–701

Vanneschi L, Tomassini M, Collard P, Vérel S (2006) Negative slope coefficient: a measure to characterize
genetic programming fitness landscapes. In: Collet P, Tomassini M, Ebner M, Gustafson S, Ekárt A (eds)
Proceedings of the 9th European conference on genetic programming. Lecture notes in computer science,
vol 3905. Springer, pp 178–189

Yannakakis GN, Hallam J (2004) Evolving opponents for interesting interactive computer games. In: Proceed-
ings of the 8th international conference on simulation of adaptive behaviour (SAB04), pp 499–508

123

http://www.counter-strike.com

	Evolving team behaviours in environments of varying difficulty
	Abstract
	1 Introduction
	2 Related work
	2.1 Artificial intelligence in FTPS games
	2.2 Evolutionary computation and games
	2.3 Evolutionary computation and teamwork

	3 The gaming environment
	4 The genetic program
	4.1 Fitness calculation
	4.2 Selection
	4.3 Crossover
	4.4 Mutation

	5 Experimental setup
	6 Results
	6.1 Testing generality of evolved solutions

	7 Conclusions
	Acknowledgements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

