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Abstract Machine learning approaches to information retrieval are becoming increasingly
widespread. In this paper, we present term-weighting functions reported in the literature that
were developed by four separate approaches using genetic programming. Recently, a number
of axioms (constraints), from which all good term-weighting schemes should be deduced,
have been developed and shown to be theoretically and empirically sound. We introduce a
new axiom and empirically validate it by modifying the standard BM25 scheme. Furthermore,
we analyse the BM25 scheme and the four learned schemes presented to determine if the
schemes are consistent with the axioms. We find that one learned term-weighting approach
is consistent with more axioms than any of the other schemes. An empirical evaluation of the
schemes on various test collections and query lengths shows that the scheme that is consistent
with more of the axioms outperforms the other schemes.

Keywords Information retrieval · Genetic programming · Axiomatic constraints

1 Introduction

Term-weighting is crucial to the problem of document ranking within most, if not all, informa-
tion retrieval (IR) systems. Many approaches to term-weighting have been developed over the
years. These schemes have been produced from various types of models, ranging from empir-
ical learning models to purely theoretical models. With the increase in computing resources
and the advances in machine learning techniques, many attempts have been made to learn
term-weighting schemes assuming a bag of words approach. In particular, genetic program-
ming (GP) is becoming popular due to the freedom offered in the definition of the problem
and representation of the possible solutions. The basis behind many of these approaches is
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that useful features and properties within a population of solutions survive and propagate.
GP produces a symbolic representation of the solution that is useful for analysis and gener-
alisation. There have been a number of attempts using GP to evolve term-weighting schemes
for ad hoc retrieval (Oren 2002b; Fan et al. 2004; Trotman 2005; Cummins and O’Riordan
2006). Although there has been much research into learning weights for terms in IR, many
of these approaches do not produce term-weighting schemes.

An axiomatic approach to IR (Fang and Zhai 2005) has been developed which refines
a number of constraints (axioms) (Fang et al. 2004) to which all good weighting functions
should adhere. This approach and, in particular, the constraints are useful in attempting to
theoretically motivate term-weighting functions that are developed from purely automated
learning (empirically-based) models. More precisely, we believe that the best functions pro-
duced from a valid learning approach to IR should adhere to these existing constraints. The
satisfaction of the constraints serve as a useful guide to the optimality of the solutions pro-
duced. These constraints can potentially be used in a number of different ways. They could
be used to constrain the search space so that the adopted learning approach searches a much
smaller space. In such a case, the learning approach could search a space in which good
solutions are already known to exist.

They can also be used to validate a specific learning paradigm or learning framework in
an IR domain by showing that the solutions (term-weighting schemes) produced adhere to
them (i.e. that the learning approach adopted navigates the search space effectively and finds
the area of the space in which good term-weighting schemes lie). This is the how the con-
straints are used in this work. This paper presents an analysis, using the existing axiomatic
framework for IR, of term-weighting schemes learned using four different GP approaches.
Firstly, we introduce the existing axioms and postulate a new axiom that complements the
existing ones. We present one benchmark term-weighting scheme (BM25) and four learned
term-weighting schemes produced from separate GP approaches to the problem. All of the
learned term-weighting schemes here have been developed using a GP process in a bag
of words retrieval framework. We empirically validate the new axiom and furthermore, we
show that the scheme that satisfies the most axioms outperforms the others over multiple
collections for various types of query without the need for tuning parameters.

The remainder of the paper is organised as follows: Section 2 introduces the existing
axioms and motivates a further axiom. Section 3 presents five term-weighting approaches
together with a brief analysis of each scheme. In Sect. 4, we present results that provide
empirical evidence for the validity of the axioms. Finally, our conclusions are outlined in
Sect. 5. This paper extends previous work (Cummins and O’Riordan 2007a) by including
a separate empirical validation of the new axiom. Furthermore, a weaker version of one of
the axioms is included as it is shown that, contrary to previous work (Fang and Zhai 2005,
Cummins and O’Riordan 2007a), two axioms are not unconditionally adhered to by any
efficient modern term-weighting schemes. A discussion of, and resolution to, this issue is
included as Appendix.

2 Axioms for term-weighting

2.1 Term-weighting anatomy

High performance term-weighting schemes are typically comprised of three components.
These include a term-discrimination aspect, which is the basic weight assigned to a
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term (w(t)), a term-frequency aspect (tff ()) and a normalisation aspect (n()). The term-
discrimination aspect (usually some type of id f ) promotes terms which are more likely to
convey the meaning of the document (i.e. terms that significantly contribute to the topic of the
document). The term-frequency aspect aims to promote documents with more occurrences
of these useful terms. Finally, the normalisation aspect aims to promote shorter documents
with high occurrences of query terms. In a term-weighting scheme, each of these aspects
can be realised using different features and characteristics of the terms, the documents and
the collection. There are also many ways in which the interplay between the three aspects of
a term-weighting scheme can differ. Ensuring that a term-weighting scheme contains these
three aspects does not guarantee that the scheme will adhere to any of the constraints outlined
in the next section, as these aspects may be realised using different features. Neither does it
guarantee a high performance term-weighting scheme. It is typically the interplay between
these three aspects that is constrained in some way by the axioms.

2.2 Axioms

We will briefly introduce the previously developed constraints using an inductive framework
(Fang and Zhai 2005). The idea of this inductive framework is to define a base case function
that describes the score (weight) assigned to a document containing a single term matching
(or not matching) a query containing a single term. All other cases can be dealt with induc-
tively using two separate functions. A document growth function describes the change in the
score when a single term is added to the document, while a query growth function describes
the change in the score when a single term is added to the query. This is an elegant approach
to formalising necessary characteristics of good term-weighting functions. It is also possibly
a more realistic approach to the human determination of relevance, as human readers will
tend to update their relevance judgments as they read through documents.

A number of axioms have been postulated and these can be used to validate or to develop
term-weighting schemes in a constrained space. Thus we use the term axiom and constraint
analogously in this paper. Assume S(Q, D) is a function which scores a document D in rela-
tion to a query Q in a standard bag of words retrieval model. With notation similar in style to
the original work (Fang and Zhai 2005), the constraints can be formalised as follows, where
t ∈ T is a term t in the set of terms in a corpus and δt (t, D, Q) = S(Q, D ∪ {t}) − S(Q, D)

(i.e. the change in score as t is added to the document D):

Constraint 1 ∀Q, D and t ∈ T , if t ∈ Q, S(Q, D ∪ {t}) > S(Q, D)

Constraint 1 states that adding a new query term to the document must always increase the
score of that document. This captures the basic behaviour of a term-frequency aspect. This
constraint ensures that the basic weight of a term (an id f type measure) must be positive
and that any penalisation due to the document becoming longer (normalisation) must be less
than the increase in score due to the term being added.

Constraint 2 ∀Q, D and t ∈ T , if t /∈ Q, S(Q, D ∪ {t}) < S(Q, D)

Constraint 2 states that adding a non-query term to a document must always decrease the
score of that document. This constraint ensures that some sort of normalisation is present
and specifies its basic operating principle.

Constraint 3 ∀Q, D and t ∈ T , if t ∈ Q, δt (t, D, Q) > δt (t, D ∪ {t}, Q)

Constraint 3 states that adding successive query terms to a document should increase the
score of the document less with each successive addition. Essentially, the term-frequency
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influence must be sub-linear. The intuition behind this constraint is that it is ultimately the
first occurrence of a term that indicates that the document is on-topic (i.e. related to the
query). Due to characteristics of natural language usage, it is known that when a term first
appears in a document, the likelihood of re-appearance increases. Thus, the weight given to
successive occurrences of a query term should be reduced.

2.2.1 Weaker version of Constraint 1

A weaker constraint can be deduced from the first two constraints and can be described as
follows:

Constraint 1.1 ∀Q, D and t1 ∈ T , t2 ∈ T , if t1 ∈ Q and t2 /∈ Q, S(Q, D ∪ {t1}) >

S(Q, D ∪ {t2})
Constraint 1.1 states that adding a new query term to the document should result in a higher
score for the document than adding a non-query term. It is true that if Constraints 1 and 2
are satisfied then Constraint 1.1 is satisfied accordingly. This constraint has previously been
introduced (Fang et al. 2004) and is included because Constraints 1 and 3 are not uncon-
ditionally satisfied by any efficient modern term-weighting scheme.1 This is because the
normalisation used in term-weighting schemes penalises all of the existing terms in a doc-
ument. Therefore, a query term with a low discrimination value (id f ) that is added to the
document, may not increase the score of the document sufficiently to offset the penalisation
due to the document increasing in length. Therefore, Constraint 1 will be deemed satisfied if
the score, attributable from the term, and not the document as a whole, increases for every
occurrence of that term. Similarly, Constraint 3 will be deemed satisfied if the score increase,
attributable from a particular term, grows sub-linearly.

These constraints are used to check the validity of term-weighting schemes before eval-
uation. Furthermore, term-weighting schemes which adhere to these constraints are shown
empirically to outperform weighting schemes that fail to adhere to one or more of the con-
straints (Fang et al. 2004; Fang and Zhai 2005). The constraints are also useful in defining
valid bounds on tuning parameters that appear in many existing term-weighting schemes.
It should be noted that simply adhering to these constraints does not guarantee a high per-
formance weighting scheme. Rather it is the violation of one or more of the constraints that
indicates the performance is non-optimal (i.e. breaks some rule of the proposed model of
relevance). It is worth noting that these axioms typically constrain a term-weighting scheme’s
within-document features (i.e. its term-frequency aspect and normalisation aspect), although
they do enforce some limitations on the type of term-discrimination aspect used.

2.3 New axiom

We now propose a new constraint which aims to avoid over-penalising successive occurrence
of non-query terms in documents.

Constraint 4 ∀Q, D and t ∈ T , if t /∈ Q, |δt (t, D, Q)|−1 > |δt (t, D ∪ {t}, Q)|−1.
According to Heaps’ law (1978), the appearance of new, previously unseen terms in a cor-
pus grows in roughly a square-root relationship (sub-linearly) to the document length (in
words). Therefore, as non-query terms appear in a document they should be penalised less

1 See Appendix for a discussion and a solution that unconditionally satisfies the constraints.
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with successive occurrences. This constraint avoids over-penalising longer documents by
ensuring that the normalisation aspect is sub-linear. For example, consider a document that
has 9 words (dl = 9) and contains 3 unique terms (i.e. vector length of 3). If this document
grows in length to 100 words (dl = 100), the expected number of unique terms would be
approximately 10. Thus, as the document grows in length, the topic broadens sub-linearly.
Furthermore, it is the number of occurrences (term-frequency) of these unique terms that
indicates the strength of each different aspect (i.e. dimension of the vector) of the topic.

Essentially, the inverse of the score reduction due to non-query terms being added (an
increasing value) should be sub-linear. This follows intuitively from Constraint 3 which con-
trols how the score of a document changes as successive query terms are added to a document.
Therefore, it is the first appearance of a non-query term that ultimately indicates a change in
the topic of a document and successive occurrences of this term do not indicate that the topic
of that document is drifting from the query to the same degree.

2.4 Summary

The following are some useful properties of term-weighting schemes that can be deduced
from the axioms:

– A term-weighting scheme must contain a positively-increasing term-frequency compo-
nent.

– The basic weight of a term (i.e. some type of id f ) must always be positive.
– The term-frequency aspect must be sub-linear (as more of the same query terms occur,

the increase in score must be smaller).
– A scheme must contain a normalisation aspect (some method of penalising longer docu-

ments).
– The normalisation aspect must be sub-linear (as more non-query terms occur, the increase

in penalisation must be smaller).
– The penalisation of document score, due to the document increasing in length (normali-

sation), must be less than the increase in score when a query term is added.

3 Term-weighting scheme analysis

In this section, one benchmark and four learned term-weighting schemes are introduced
and briefly analysed with respect to the previously outlined axioms. Table 1 summarises the
results from this section.

Table 1 Constraints satisfaction

Rank Scheme Constraints

1.1 1 2 3 4

1 F4(Q, D) Yes Yes* Yes Yes* Yes

2 BM25(Q, D) Cond. Cond. Yes Cond. No

3 F1(Q, D) Cond. Cond. Yes Cond. No

4 F3(Q, D) Cond. Cond. Cond. Cond. No

5 F2(Q, D) Yes Cond. No Cond. No
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3.1 BM25

The BM25 weighting scheme, developed by Robertson et al. (1995), is a weighting scheme
based on the probabilistic model. The score of a document D in relation to a given query Q
can be calculated as follows:

BM25(Q, D)

=
∑

t∈Q∩D

⎛

⎝ t f D
t

t f D
t + k1 ·

(
(1 − b) + b · dl

dlavg

) · log

(
N − d ft + 0.5

d ft + 0.5

)
· t f Q

t

⎞

⎠ (1)

where t f D
t is the frequency of a term t in D and t f Q

t is the frequency of the term in the query
Q. dl and dlavg are the length and average length of the documents respectively measured
in non-unique terms. N is the number of documents in the collection and d ft is the number
of documents in which term t appears. k1 is the term-frequency influence parameter which
is set to 1.2 by default. The query term weighting used here (t f Q

t ) is slightly different to the
original weighting method proposed (Robertson et al. 1995) but has been used successfully
in many studies (Fang and Zhai 2005). b is the document normalisation influence parameter
and has a default value of 0.75.

3.1.1 Analysis

The term-frequency aspect is sub-linear and the normalisation used can never lead to a
decrease in weight (attributable from that term) when a query term is added. However, it can
be noted that the id f component in the BM25 (log(

N−d ft +0.5
d ft +0.5 )) function will return a negative

value when d ft > N
2 and thus violates Constraints 1, 1.1 and 3 when stop-word removal is not

used (as very frequent terms remain in the system). Constraint 2 is satisfied unconditionally
as the addition of a non-query term always decreases the score of the document. It can also
be seen that the normalisation function used in this function is linear. This suggests that it
needs to be tuned on specific collections as it may over-penalise long documents on certain
collections. Thus, Constraint 4 is also violated.

3.2 Oren

One of the first approaches to evolve term-weighting schemes (Oren 2002a,b) uses non-
atomic features of the terms, documents, queries and the collection to evolve term-weighting
functions for use in IR. Using parts of existing functions as terminals in the GP can be viewed
as a type of seeding or biasing, as prior knowledge about what constitutes a good ranking
function is used. This type of approach can arbitrarily limit the search space. This work uses
a small document collection (1,239 documents) and 70 queries to evolve functions using a
population of 100 individuals run for 150 generations. It has been noted by the author that
they believe that many of the functions are non-generalisable. One of the schemes outlined
in this work can be re-written as follows:

F1(Q, D) =
∑

t∈Q∩D

⎛

⎜⎝
t f D

t

t f D
t + d ft + dl · (1 + 0.436 · t f D

t

t f D
max

· (c fmax + log(c fmax)))

⎞

⎟⎠ (2)
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Fig. 1 Change in weight for F1 for scenarios 1 and 2 respectively

where t f D
max is the frequency of the most common term in D and c fmax is the frequency of

the most common term in the collection.

3.2.1 Analysis

This function can be written as t f D
t

t f D
t +d ft +dl·(1+ t f D

t
t f D
max

·K1)

where K1 is a constant such that

K1 > 0. Consider the simple case where a document consists of multiple occurrences of the
same query-term (scenario 1). In such a circumstance, let x = t f D

t = dl = t f D
max. The func-

tion can then be re-written as F1 = x
x+d ft +x ·(1+K1)

where d ft is a constant for a particular
term. Figure 1 shows the change in score for the first 20 occurrences of the query term in this
scenario. An extra occurrence of a query term will make the score of the document higher
and the term-frequency aspect will grow sub-linearly. In these circumstances, Constraints 1
and 3 are satisfied.

Now, consider a document with 100 terms (dl = 100) and a maximum term-frequency of
30 for one of the terms (t f D

max = 30) already occurring in the document (scenario 2). The
function can then be written as F1 = x

x+d ft +(100+x)·(1+ x
30 ·K1)

. Figure 1 also shows the change

in weight for the first 20 occurrences of another query term added to the document in this
scenario. It can be seen that in this circumstance that the score of the document (attributable
from that query term) actually decreases. This violates Constraints 1 and 3. Constraint 2 is
satisfied as the score of a document will always decrease as non-query terms are added due
to dl in the denominator. It can be shown that Constraint 1.1 is also satisfied. However, it can
be determined that the normalisation component is linear in nature (i.e. the normalisation
component dl is linear in the denominator) violating Constraint 4. As a result this function is
likely to perform poorly overall, and possibly even worse for long queries where the weights
of a number of different query terms will interact incorrectly.

3.3 Fan et al.

Another approach to evolving weighting schemes (Fan et al. 2004) which assumes a simplistic
query term weighting (i.e. t f Q

t ) has also been attempted. In this research, a term-weighting
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function was learned using short queries and a population of 200 individuals for 30 genera-
tions. The best function outlined therein can be re-written as follows:

F2(Q, D) =
∑

t∈Q∩D

(
log(t f D

t · E X P)

vl + 2 · t f D
max + 0.373

)
· t f Q

t (3)

where

EXP =
⎛

⎝t f D
avg + t f D

t

log
(

t f D
t · 2 · t f D

avg

) + t f D
t · N · t f D

avg · (
t f D

max + vl
)

d f 2
t

⎞

⎠ (4)

where t f D
avg is the average term-frequency in D and vl is the length of the document vector

(unique terms).

3.3.1 Analysis

Again, consider the simple case where a document consists of multiple occurrences of the
same term (scenario 1). In such a circumstance, let x = t f D

t = dl = t f D
max = t f D

avg and
vl = 1. The weight of the document can be written as:

F2 = log

(
x ·

(
x + x

log(x · 2 · x)
+ x · N · x · (x + 1)

d f 2
t

)) /
(1 + 2 · x + 0.373)

Figure 2 shows the score change when N=100,000 and when d ft = 1 and when d ft = 10.
It can be seen that Constraints 1 and 3 will be violated in this simplistic case. Now consider
the more common case where a document already contains a number of terms (e.g. dl = 100,
t f D

max = 30 and vl = 4). Figure 2 shows the score change (attributable from a particular
query term) when it is added to this type of document. The score change can be re-written
as follows for a particular term:

F2 = log

(
x ·

(
100 + x

5
+ x

log
(
x · 2 · 100+x

5

)+ x · N · 100+x
5 · (30 + 5)

d f 2
t

)) /
(5+2 · 30+0.373)
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Fig. 2 Change in weight for F3 for scenarios 1 and 2 respectively
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In this second scenario, a new occurrence of a query term results in a higher score for the
document and the term-frequency is sub-linear. As a result, Constraints 1 and 3 are condi-
tionally satisfied. As the normalisation used is the number of unique terms (vector length),
Constraints 2 and 4 are violated. If a non-query term which has already appeared in the doc-
ument re-occurs, the weight of the document will not decrease as the vector length remains
unchanged. Even if the document length factor used was changed to the document length
(i.e. dl), Constraint 4 would still be violated, as the normalisation factor is linear in nature.

3.4 Trotman

An approach using primitive atomic features of terms, documents, queries and the document
collection has also been attempted (Trotman 2005). This approach uses a large terminal and
function set with little or no constraints on the search space. In this approach a seeded pop-
ulation of 100 individuals (96 random and 4 existing functions) was run for 100 generations
13 times. One of the best performing schemes (named run 5, Trotman 2005) can be re-written
as follows:

F3(Q, D)=
∑

t∈Q∩D

⎛

⎜⎜⎝log
2

∣∣∣∣
N − log

2
|N |

2 · d ft

∣∣∣∣ · c ft

d ft
· t f D

t · t f Q
t · c fmax

max

(
C3, C4+C1·(log|C2+t f Q

t |+c ft )·dl
N ·dlavg

)
+t f D

t

⎞

⎟⎟⎠

(5)

where c ft is the frequency of t in the entire collection of N documents. C1, C2, C3 and C4

are constants with values 33.40102, 23.94623, 1.2 and 0.25, respectively.

3.4.1 Analysis

Firstly, the log2 |
N−log

2
|N |

2·d ft
| part can lead to a negative weight for terms with a high document

frequency. This leads to Constraints 1, 1.1 and 3 being violated in circumstances similar to

those of the BM25 scheme. We can see that when C3 > C4 + C1·(log|C2+t f Q
t |+c ft )·dl

N ·dlavg
, which

typically occurs when c ft is low (i.e. for rare terms), the within document part of the formula

reduces to t f D
t

1.2+t f D
t

which is a primitive form of the BM25 local weighting. This form of

the function has no normalisation component and thus violates Constraint 2 in these circum-
stances. However, this form conditionally satisfies Constraints 1 and 3 as adding a query term
to a document always increases its score (Constraint 1) and is sub-linear (Constraint 3).

When C3 < C4 + C1·(log|C2+t f Q
t |+c ft )·dl

N ·dlavg
which typically occurs when the collection fre-

quency for a term is high (i.e. more common terms), a different form of the function is used.
Consider a typical case when t f Q

t is 1 and N is large (e.g. 100,000). In such a case, this reduces
to approximately 0.25 + 3.2+c ft

3000 · dl
dlavg

. For high values of c ft , this will exceed C3 (i.e. 1.2).

Interestingly, this can be re-written as t f D
t

0.25+K2· dl
dlavg

+t f D
t

(where K2 is a global constant for a

particular term) which contains a normalisation form similar to the BM25 scheme. When the
function takes this form, Constraints 1, 1.1, 2 and 3 are satisfied. However, the normalisation
scheme is not sub-linear and thus does not satisfy the new constraint (Constraint 4).
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3.5 Cummins–O’Riordan

In this approach, a three-stage incremental approach was used to develop an entire term-
weighting scheme by evolving, in turn, three constituent parts of a function (Cummins and
O’Riordan 2007b). The term-discrimination (or global) part was developed using a pop-
ulation of 100 for 50 generations, while the term-frequency and normalisation parts were
developed using a population of 200 for 25 generations each. The following is a typical
entire term-weighting scheme:

F4(Q, D) =
∑

t∈Q∩D

⎛

⎝ nt f

nt f + 0.45
·
√

c f 3
t · N

d f 4
t

· t f Q
t

⎞

⎠ (6)

The term-frequency influence factor here (i.e. nt f
nt f +0.45 ) has been modelled to reflect

the effect of an evolved term-frequency influence function by measuring the relative term-
frequency (Cummins and O’Riordan 2005). The normalisation aspect was evolved on three
different collections (indexed separately) with varying document length characteristics as
most normalisation functions (including BM25) tend to be collection specific. One of the
best normalisation functions found using this approach was

√
dl/dlavg. Thus, the entire

function can be recovered when nt f is as follows:

nt f = t f D
t√

dl/dlavg
(7)

3.5.1 Analysis

It can be seen that the term-discrimination part of this function is always positive and the
term-frequency aspect is sub-linear. The normalised term-frequency (nt f ) is normalised as
t f D

t /
√

dl/dlavg. Thus, if a query term is added both t f D
t and dl will increase by 1, thereby

increasing the value of the nt f component. As a result, Constraints 1, 1.1 and 3 are deemed
satisfied. If a non-query term is added, nt f will decrease in value satisfying Constraint 2. As
more non-query terms are added, the document penalisation grows sub-linearly. This leads
to Constraint 4 being satisfied.

3.6 Summary of constraint satisfaction

Table 1 shows the constraints that each scheme satisfies. The conditional satisfaction (denoted
“Cond.”) means that the constraint is satisfied in many circumstance (as noted in the analysis)
but is not unconditionally satisfied. Schemes that satisfy Constraints 1 and 3 (ignoring the
typically small penalisation of previously existing terms in the document) are denoted as
“Yes*” as they adhere to the constraints proposed in the original paper (Fang et al. 2004) but
not to the slightly more general ones that are reformulated in the inductive framework (Fang
and Zhai 2005).

We have ranked these schemes based on the number constraints they satisfy. We ranked
BM25 and F3 ahead of F2 mainly due to the fact that BM25 and F3 will only violate Con-
straints 1 and 3 if stop-words are not removed. Stop-words are removed for the experiments
outlined in this paper and indeed are typically removed for many IR systems. Thus, F2 will
typically break constraints more often than BM25 or F3 will. It should be noted that this
ranking is coarse as we do not know if violations of different constraints lead to equal levels
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of suboptimality. We are also unsure if the schemes identified are specific to a type of query
or indeed the specific environment in which they were trained. Nonetheless, given these
details of constraint satisfaction, it seems an intuitive and possibly useful way of ordering
the schemes by expected performance.

4 Empirical comparison

In this section we present experiments to empirically validate the newly introduced axiom
and the previous analysis.

4.1 Document collections and evaluation

We used the LATIMES, FBIS and FT (years 1991–1993) collections from TREC disks 4
and 5 as test collections. Topics 401–450 were used for each of these collections. For each
set of topics we create a set of short queries consisting of the title field of the topics, a set of
medium length queries consisting of the title and description fields, and a set of long queries
consisting of the title, description and narrative fields. We also use documents from the OH-
SUMED collection (years 1989 and 1990–1991) as two further test collections. We created
short queries for the OHSUMED collections by simply removing terms from the descrip-
tion field of the 63 topics. Standard stop-words from the Brown Corpus2 are removed and
remaining words are stemmed using Porter’s algorithm (1980). Furthermore, mean average
precision (MAP) is used as the evaluation metric as it was directly used as the fitness function
in all of the learning approaches mentioned herein. It is a widely used and stable measure of
IR system performance (Buckley and Voorhees 2000).

4.2 Validation of new axiom

In this section, we validate the new axiom (Constraint 4) which states that the normalisation
aspect should be sublinear. We use the BM25 scheme and find the optimal performance of the
normalisation parameter b for each collection. We manually tune the BM25 scheme using
eight values of b (0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.825 and 1) which are within its
acceptable range of values. We use the BM25 scheme for this evaluation as its normalisation
scheme is linear for all values of b and the normalisation part was developed in conjunction
with the full scheme. The best (BM25opt), worst (BM25low) and average (BM25avg) per-
formance of the BM25 scheme for the eight values of b are shown in Tables 2 and 3. We again
use the BM25 scheme and incorporate the evolved normalisation (

√
dl/dlavg) factor into the

scheme. Thus, the evolved sub-linear normalisation (
√

dl/dlavg) replaces the standard linear
normalisation in the BM25 scheme ((1 − b) + b · dl

dlavg
). Although this normalisation was

learned in a different framework, it is incorporated into the BM25 scheme. Normalisation
schemes, and indeed other parts of schemes, have previously been analysed and substituted
separately in many studies (Salton and Buckley 1988; He and Ounis 2003). Therefore, the
only difference between the two schemes is that the modified BM25 scheme (BM25mod)
adheres to the new axiom (Constraint 4) and the original BM25 does not.

The modified BM25 scheme (BM25mod) performs comparably to the optimal perfor-
mance of the original BM25 (BM25opt) scheme and sometimes surpasses it. The perfor-

2 http://www.lextek.com/manuals/onix/stopwords1.html.
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Table 2 %MAP of BM25 and modified BM25 on three TREC collections

#Docs FT91–93 (401–450) FBIS (401–450) LATIMES (401–450)
(138668) (130471) (131896)

Short Medium Long Short Medium Long Short Medium Long

Scheme
BM25opt 32.97 35.74 36.22 31.35 32.00 30.09 25.92 26.73 29.63

BM25avg 32.00 35.07 34.17 28.22 29.50 28.87 24.47 25.46 27.08

BM25low 30.00 32.95 30.24 23.80 26.54 25.58 21.94 23.94 23.54

BM25mod 33.03 36.08 36.30 31.01 31.64 28.40 25.80 26.11 27.45

Table 3 %MAP on OHSUMED
collections

#Docs OH89 (1–63) OH90–91 (1–63)
(74869) (148162)

Short Medium Short Medium

Scheme
BM25opt 28.13 31.23 25.71 28.08

BM25avg 26.99 27.28 24.55 27.03

BM25low 23.66 30.10 22.36 24.98

BM25mod 27.71 31.19 25.55 28.76

mance for the worst value of b is significantly worse than the optimal setting of b and
consequently BM25mod. The modified BM25 scheme consistently outperforms the aver-
age performance of the original BM25 scheme. The optimal b parameter (used in the
BM25opt scheme) varies considerably on the collections and queries used in these experi-
ments. This free parameter varies on a per collection and per query basis as has been shown
in many previous studies (Chowdhury et al. 2002; He and Ounis 2003). There have been
many studies into more efficient and effective ways to tune these normalisation parameters
(He and Ounis 2003, 2005), other than manually tuning them over a range of values. How-
ever, it is interesting that a non-parametric scheme that adheres to the new axiom performs
comparably to the optimal performance of the linear normalisation. Furthermore, it is rea-
sonable to assume that this parameter is needed in the original BM25 scheme because the
linear function shape is not suitable for normalisation (and thus needs to be tuned depending
on the data that is presented).

4.3 Empirical comparison of schemes

The results (Tables 4 and 5) show that F4 outperforms most of the other schemes on the var-
ious test data. The schemes tend to perform in accordance with the rank in Table 1. However,
F1 is the exception to this rule. This scheme adheres to some of the constraints but performs
poorly on many of the collections. This scheme was learned on a very small set of documents
(1,239 documents) and it would appear that this is not a suitable size collection to learn gen-
eralisable term-weighting schemes. Indeed, it is suggested (Oren 2002b) that this formula is
not likely to be generalisable. F2, which was trained using only short queries, is very specific
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Table 4 %MAP on three TREC collections

#Docs FT91–93 (401–450) FBIS (401–450) LATIMES (401–450)
(138668) (130471) (131896)

Short Medium Long Short Medium Long Short Medium Long

Scheme
F4 32.72 36.30 38.46 31.49 31.45 31.30 26.50 26.87 28.80

BM25 31.27 35.33 35.35 27.54 28.87 30.00 24.85 26.73 28.86

F1 23.13 23.40 18.92 19.72 16.50 10.17 15.40 13.73 11.83

F3 31.95 33.82 33.61 26.93 28.51 30.63 24.30 25.81 25.68

F2 26.61 15.40 08.00 29.10 24.90 12.87 12.56 08.74 02.59

Table 5 %MAP on OHSUMED
collections

#Docs OH89 (1–63) OH90–91 (1–63)
(74869) (148162)

Short Medium Short Medium

Scheme
F4 27.56 32.80 25.53 30.07

BM25 27.29 30.67 25.59 28.08

F1 20.26 15.70 17.70 13.51

F3 26.10 30.72 23.19 26.27

F2 06.97 00.90 06.60 01.05

to these types of queries. It can be seen that the performance of F2 gets progressively worse
as the query length increases (even though there is more evidence supplied as to the user’s
intention). F1, which was trained on a small amount of test data, behaves similarly. It is
intuitive that as a user supplies more evidence about his information need (even if some of
these terms are noisy) the performance for that query should tend to improve. This is be a
desirable property in any good term-weighting scheme.

4.4 Discussion

The existing axioms and the newly postulated axiom are useful estimators of term-weighting
optimality. They can be useful in estimating the performance of a scheme prior to evaluation.
An interesting result is that many of the learned approaches conditionally adhere to some of
the constraints. This would suggest that they did indeed learn useful methods for weighting
terms in their training environment but that their training data is quite specific (i.e. the con-
straints are satisfied for the characteristics of the training data but are not unconditionally
satisfied).

These results can tell us something about how to learn term-weighting functions. Small
collections (less than 10,000 documents) should be avoided when aiming to learn generalisa-
ble term-weighting schemes. Indeed, it has already been shown that the term-discrimination
(global) part of a term-weighting scheme can indeed be learned on a small collection but
it is typically the within-document (local) part of these schemes that is not generalisable
(Cummins and O’Riordan 2006). To overcome the collection dependence problem (which
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typically affects the type of normalisation to use), it is advisable to use multiple varied training
collections indexed separately in order to learn schemes that will adhere to the new constraint
specified herein. On a related note, it can be determined that using only the vector length for
normalisation will lead to violations of Constraints 2 and 4 (as outlined in Sect. 3.3). Fur-
thermore, it is advisable to use medium or long queries when learning such term-weighting
schemes. Short queries, for which F2 was learned (Fan et al. 2004), do not provide as much
information about how the weights of many different terms should interact with each other
(particularly in a term-discrimination context). This can be seen by the particularly poor
performance of this scheme for long queries.

5 Conclusions

A new axiom for IR has been introduced. This axiom has been shown to be theoretically and
empirically sound. We have presented four learned term-weighting schemes and one term-
weighting scheme which was developed analytically. Only one of the schemes is consistent
with all of the axioms. Interestingly, this scheme is one of the learned schemes. An empirical
evaluation of the performance of the term-weighting schemes validates the analysis.

An interesting future direction would be to constrain the search space using the axioms
and then use a learning technique to search this reduced space. Another interesting direc-
tion would be to determine if the number of particular violations of a constraint leads to
poor retrieval for certain queries. Although some constraints are only conditionally satisfied
(i.e. Constraints 1 and 3) by modern retrieval functions, they may or may not be violated
in a normal retrieval setting. Using an inductive approach where documents and queries are
examined as they grow in length, it could be determined how often a specific term-weighting
scheme violates these constraints for a typical document collection. The number of times
these constraints are violated may well be related to query performance. It would be inter-
esting to further refine this set of heuristics so ultimately term-weighting performance could
be judged a priori.

Acknowledgements This work is being carried out with the support of IRCSET (the Irish Research Council
for Science, Engineering and Technology) under the Embark Initiative. The authors would also like to thank
the anonymous reviewers for their detailed comments and suggestions.

Appendix: Violations and satisfaction of constraints

Violations

Violations of Constraints 1 and 3

Due to the nature of the normalisation schemes used in modern retrieval functions, when a
term-weighting scheme uses the document length explicitly to penalise the document, Con-
straint 1 (and consequently Constraint 3) can never be satisfied unconditionally. Consider
the case where a term with an extremely low id f value (i.e. where the term has negligible
semantic content) is added to a document. The penalisation due to the document increasing
in length will more than offset the increase in weight as the term is added (as all existing
terms in the document are penalised by the document length accordingly). For the BM25
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Fig. 3 Violation of Constraint 1

20÷5100÷550÷52÷510÷5

1÷620÷6100÷650÷62÷610÷6

w6 =1w5 =20w4 =100w3 =50w2=2w1 =10

Document 1 (score = of terms = 36.4)

Document 2 (score = of terms = 30.5)

Violation of Constraint 1
Query and weights of query terms

scheme this will only tend to happen for terms with a very low id f value (terms that appear
in close to half of the documents).

Figure 3 shows a set of query terms with some basic weights applied to them. Document
1 contains 5 of the query terms while document 2 contains 6 of the query terms. The normal-
isation part used in the example is simply the document length. The normalisation (division
by the document length) reduces the weight of all of the existing terms in the document
and therefore, the score of a document may not increase as a query term is added. In the
example shown, the score of document 1 is calculated by summing up the scores of the 5
query terms (36.4). The score of document 2 is calculated similarly (summing up the 6 query
terms). As the query term added to document 2 has a very low term-discrimination weight
(w6 = 1) compared to the other query terms, the increase in weight due to this query term
being added does not offset the increase in penalisation. The score of document 2 is only
30.5, although document 2 is created by adding a query term to document 1. However, the
potential for violations of the type just described may be more prevalent in different types of
term-weighting schemes. It is worth noting for the discussion presented in Appendix section
“Satisfaction” that the efficiency of these types of schemes is O(N × |Q|) where |Q| is the
length of the query vector (usually less than 20 for even the longest queries, but often only 2
or 3 for shorter queries) and N is the number of documents in the collection. This is because
only query terms appearing in the document are used to determine the score of a document.
This efficiency is important as test collections are becoming extremely large.

Choice of normalisation

The document length is typically used explicitly to penalise documents. S1(Q, D) and
S2(Q, D) describe two possible ways of normalising a document that are used in modern
weighting schemes.

S1(Q, D) =
∑

t∈Q∩D

(
t f f ()

n()
· w(t)

)
(8)

where w(t) is the term-discrimination aspect, t f f () is the term-frequency aspect and n() is
some normalisation aspect. Other functions, such as the BM25 scheme, penalise the actual
term-frequency as follows:

S2(Q, D) =
∑

t∈Q∩D

(
t f f (

t f D
t

n()
) · w(t)

)
(9)
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Fig. 4 Change in score for different methods of normalisation

Both of these approaches to normalisation lead to the same potential violations of
Constraints 1 and 3. Furthermore, the first method of normalisation presented (S1(Q, D) in
Eq. 8) violates Constraints 1 and 3 for more reasons. As the normalisation (n()) is independent
of the term-frequency influence (t f f ()), it may grow to such a degree that the penalisation
more than outweighs the increase of weight that the term-frequency provides.

Consider these two somewhat similar methods of applying normalisation (i.e. S1(Q, D)

and S2(Q, D)) from an inductive perspective. Now, let x define the term-frequency for a query
term. Consider a document that is made up of successive occurrences of this term. In such
a case, x also defines the document length. Let log(x) be the term-frequency factor and

√
x

be the normalisation aspect. In isolation they would appear to adhere to the aforementioned
constraints (i.e. the term-frequency is sublinear and the normalisation is sublinear). Figure 4
shows that S1(Q, D) (i.e. log(x)/

√
x) does not always increase for successive occurrences

of query-terms. S2(Q, D) does adhere to this constraint in the simplest inductive case. Thus,
when normalisation is explicitly used to penalise document it should be applied to the actual
term-frequency as S2(Q, D) (i.e. log(x/

√
x)) to help satisfy Constraint 1 for the simplest

inductive case.

Satisfaction

This problem identified (potential violations of Constraints 1 and 3) in Appendix section
“Violations” can be overcome by penalising documents in the same way as documents are
promoted when query terms occur. In the following solution, the document length is not used
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explicitly to penalise a document, but when a term is found which does not occur in the query,
the document is penalised as follows:

S3(Q, D) =
∑

t∈D

{
t f f () · w(t) if t ∈ Q

−b · t f f () · w(t) if t /∈ Q

where b is some constant factor. In this formulation it can be seen that the document length is
not used explicitly to penalise the document (i.e. there is no n() function used). As non query
terms occur, a weight is substracted from the overall score. Furthermore, this penalisation
can be different for different types of non-query terms. In this framework, normalisation is
implicit in the weighting scheme, and not explicit, as is usually the case. This type of weight-
ing scheme has previously been explored (Jung et al. 2000). As no summary description of
the document length is explicitly used, this may lead to better normalisation and subsequent
retrieval (Jung et al. 2000). Just as important words are more heavily weighted, words of a
high term-discrimination value that are not in the query lead to a higher penalisation as they
indicate that the topic of the document varies considerably (i.e. may relate more to other
subjects). This type of normalisation deals with each term separately and as such deals with
the semantic content of the entire document and not just of the query (via its query terms).

Consider two documents (D1 and D2) that match a similar number of query terms and are
of similar length. If D1 contains non-query terms that are of negligible semantic content (low
term-discrimination) and D2 contains non-query words that have a high term-discrimination,
it may be better to rank D1 higher than D2 as its topic is not as broad (i.e. the subject of D1 is
not associated to as much off-topic material as D2). As such it is probably more useful to the
user. This intuitively seems like a desirable property in retrieval. With such a formulation it is
easy to see that Constraints 1 and 2 are adhered to. Consequently, it must adhere to the weaker
Constraint 1.1. As more of the same non-query terms are added, the increase in penalisa-
tion is also reduced. This approach, however, is less efficient as the entire document vector
must be examined, instead of the much shorter query vector. The efficiency of this scheme is
O(N ×|D|) where |D| is the length of the document vector (on average this is about 150 for
the collections used in the experiments described herein). Thus, there is a trade-off between
unconditionally satisfying Constraints 1 and 3 and the efficiency of the approach adopted.
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