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A number of learning models are commonly employed in the simulation of social behavior. These
include population learning, lifetime learning and cultural learning. Population learning allows popula-

tions as a whole to evolve over time, typically through a Darwinian model of natural selection. Lifetime

learning allows individuals to acquire knowledge during their lifetimes and cultural learning allows indi-
viduals to pass this knowledge to their peers or subsequent generations. This work examines the

effects of cultural learning on both the fitness and the diversity of a population of neural network agents.

A population employing population learning alone and one employing both population and cultural
learning are assigned three benchmark tasks: the 5-bit parity problem, the game of tic-tac-toe and the

game of connect-four. Each agent contains a genome which encodes a neural network controller used

by the agent to perceive and react to environmental stimuli. Results show that the addition of cultural
learning promotes improved fitness and significantly increases both genotypic (the genetic make up of

individuals) and phenotypic (the behavior of individuals) diversity in the population.
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Training data for individual learning can be pro-
vided by an external oracle, providing a template
by which individuals can be compared and corrected.
Alternatively, the population itself can carry out the
sharing of information through a cultural process. Cul-
ture can be succinctly described as a process of infor-
mation transfer within a population that occurs without
the use of genetic material. Culture can take many
forms such as language, signals or artifacts.

A large body of work exists examining both the
origins of culture and some of its effects on a population
of agents (Billard & Hayes, 1997; Cangelosi, 1999;
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Denaro & Parisi, 1996; Hutchins & Hazlehurst, 1991;
MacLennan & Burghardt, 1993; Spector, 1994; Steels,
1996a, 1996b, 1997; Yanco & Stein, 1993). Culture
may be formed through a process of imitation, where an
individual acquires knowledge from another through
repeated observation and mimicry. While the existence
of such imitation in nature is still in some dispute, cul-
tural learning can still be found in the animal kingdom
(Kawamura, 1963; Whiten & Ham, 1992; Zentall, 2001).

Research examining the effects of cultural learning
in populations of agents includes work by Hutchins
and Hazlehurst (1991, 1995), Borenstein and Ruppin
(2003) and Nolfi et al. (Nolfi & Parisi, 1996; Nolfi
et al., 1994). While each model differs slightly in its
implementation, the underlying mechanisms are simi-
lar. A number of teachers are selected from the popu-
lation and pupils observe and imitate their actions or
utterances. Teachers may be either selected from the
current generation (corresponding to the horizontal
model of cultural transmission) or the previous genera-
tion (corresponding to the vertical model of cultural
transmission) (Belew, 1990; Boyd & Richerson, 1985).
Such research has shown that the addition of culture to
a population of agents is capable of enhancing the
population’s fitness.

Bull, Holland, and Blackmore (2000) examined
the effects of altering the relative speed of cultural, or
meme, evolution compared with gene evolution and
found that as the speed of cultural evolution increases,
genetic evolution degrades considerably, even halting
completely. In the words of Blackmore (2000), cultural
evolution “takes hold of the leash” by becoming increas-
ingly important in the evolution and adaptation of a
population.

This work is concerned with examining the effects
of cultural learning on the population and, in particu-
lar, the effect of cultural learning on the diversity of
the population. It has become clear that cultural learn-
ing enhances evolution but it is less clear how exactly
the mechanism achieves this. This article is an attempt
to bring attention to the largely under-used measure of
population diversity as valuable tool in the analysis of
the effects of cultural learning. In particular, we wish to
examine both genotypic (the genetic differences between
individuals in the population) and phenotypic (the behav-
ioral differences between individuals) diversity.

The experiments presented in this work employ
two populations. One uses population learning alone,
while individuals are allowed to evolve using a genetic

algorithm. The second employs both population and
cultural learning. Three benchmark problems are used
for each experiment: 5-bit parity, the game of tic-tac-
toe and the game of connect-four.

The remainder of the article is structured as fol-
lows: Section 2 discusses some background material.
Section 3 outlines the methods employed for the exper-
iments, including a presentation of the model employed,
descriptions of the benchmark learning tasks chosen
and an explanation of each diversity measure. Section 4
presents the results obtained. Section 5 provides a dis-
cussion on these results and Section 6 summarizes the
work.

2 Background

2.1 Learning Models

A number of learning models can be identified from
observation in nature. These can roughly be classified
into population, life-time and cultural learning.

2.1.1 Population Learning Population learning refers
to the process whereby a population of organisms
evolves, or learns, by genetic means through a Dar-
winian process of iterated selection and reproduction
of fit individuals. In this model, the learning process is
strictly confined to each organism’s genetic material:
The organism itself does not contribute to its survival
through any learning or adaptation process.

2.1.2 Life-Time Learning There exist species in nature
that are capable of learning, or adapting to environmen-
tal changes and novel situations at an individual level.
Such learning, known as life-time learning, is often cou-
pled with population-based learning, further enhanc-
ing the population’s fitness through its adaptability
and resistance to change. Another phenomenon related
to life-time learning, first reported by Baldwin (1896),
occurs when certain behavior discovered through life-
time learning becomes imprinted onto an individual’s
genetic material through the evolutionary processes of
crossover and mutation. To quote Hinton and Nowlan
(1987) whose model was the first to demonstrate this
effect through simulation, “learning can provide an
easy evolutionary path towards co-adapted alleles in
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environments that have no good evolutionary path for
non-learning organisms.” Subsequent work has further
explored the interactions between evolution and learn-
ing and shown that the addition of individual lifetime
learning can improve a population’s fitness (Curran &
O’Riordan, 2003a, 2003b; Floreano & Mondada, 1989;
Nolfi & Parisi, 1996; Nolfi et al., 1994; Pereira & Costa,
2001; Sasaki & Tokoro, 1997; Watson & Wiles, 2002).

2.1.3 Cultural Learning Culture can be succinctly
described as a process of information transfer within a
population that occurs without the use of genetic mate-
rial. Culture can take many forms such as language,
signals or artifacts. Such information exchange occurs
during the lifetime of individuals in a population and
can greatly enhance the behavior of such species.
Because these exchanges occur during an individual’s
lifetime, cultural learning can be considered a subset
of lifetime learning.

A number of approaches have been implemented
to simulate cultural learning including fixed lexicons
(Cangelosi & Parisi, 1998; Yanco & Stein, 1993),
indexed memory (Spector & Luke, 1996), cultural
artifacts (Cangelosi & Parisi, 1998; Hutchins & Hazle-
hurst, 1991) and signal-situation tables (MacLennan
& Burghardt, 1993). The approach chosen here was
inspired by the teacher/pupil scenario (Billard &
Hayes, 1997; Cangelosi & Parisi, 1998; Denaro & Parisi,
1996) where a number of highly fit agents are selected
from the population to act as teachers for the next gen-
eration. Pupils learn from teachers by observing the
teacher’s verbal output and attempting to mimic it
using their own verbal apparatus. As a result of these
interactions, a lexicon of symbols evolves to describe
situations within the population’s environment.

Experiments conducted by Hutchins and Hazle-
hurst (1995) simulate cultural evolution through the use
of a hidden layer within an individual neural network
in the population. The hidden layer acts as a verbal input/
output layer and performs the task of feature extrac-
tion used to distinguish different physical inputs.

In previous work by Denaro and Parisi (1996), it
was suggested that the addition of noise to a teacher’s
verbal output could enhance a population’s ability to
retain culturally acquired information. Experiments
conducted in our previous work (Curran & O’Riordan,
2004) confirmed that small levels of noise intro-
duced to the communication process improved both

the formation of a shared lexicon and agent perform-
ance.

2.1.4 Diversity A common view of the evolutionary
process is that diversity enhances the performance of a
population by providing more opportunities for evolu-
tion. A homogeneous population offers no advantage
for improvement as the entire population is focused on
a particular portion of the search space. By contrast, a
diverse population will simultaneously sample a large
area of search space, providing the opportunity to locate
different, potentially better, solutions. Two types of
diversity measure can be identified: genotypic and
phenotypic diversity.

Genotypic diversity measures examine each indi-
vidual’s genecode and determines its similarity to all
other genecodes in the population. Methods employed
in previous research include ancestry and tagging
(McPhee & Hopper, 1999), distance measures (Gusfield,
1997; O’Reilly, 1997) and entropy based approaches
(Rosca, 1995).

Phenotypic diversity is concerned with the behav-
ior of the population, that is the phenotypical represen-
tation of its genotype. Typically this can be achieved by
examining each individual’s response to stimuli in its
environment and comparing it with the responses of
all others in the population. Phenotypic diversity
measures employed by previous researchers generally
apply fitness based approaches (Burke, Gustafson, &
Kendall, 2004; McQuesten, 2002).

3 Methods

This section outlines the model employed for this set
of experiments (including the encoding scheme used
to map neural network structures to genetic code and
vice versa), describes the diversity measures devel-
oped to examine both genotypic and phenotypic diver-
sity and finally, a presentation of each benchmark
learning task.

3.1 Model

A population of agents is used to solve the benchmark
tasks described in Section 4. Each agent consists of a
neural network controller that allows it to perceive
and interact with its environment. The neuro con-
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troller’s architecture and weight values are encoded
into the agent’s genome and are allowed to genetically
evolve over the course of each experiment. Natu-
rally, weight values altered during an agent’s lifetime
through any cultural process are not reencoded into
the genome.

The model allows populations to evolve using pop-
ulation learning alone, or using a combination of pop-
ulation and cultural learning. When cultural learning
is applied, teacher agents instruct pupil agents by
interacting with their environment (using an approach
similar to that outlined in Section 2.2). Agents do not
employ lifetime learning: The only form of learning
that occurs during their lifetime is cultural learning,
which is applied at the start of each agent’s life. Thus,
an agent’s life can be summarized in the following
steps:

• Agent is born (neural network structure is formed
from inherited genetic encoding)

• Agent is exposed to teaching (where teaching is
applied)

• Agent may be selected for reproduction
• Agent may be selected to become a teacher for the

next generation

The general algorithm for the experiments presented
in this work is as follows:

• Randomly generate initial population
• Repeat:

• If teaching is applied:
• For each individual in the population,

perform cultural learning for the required
number of teaching cycles

• Calculate population fitness
• Select 10% of the population to become

teachers
• Otherwise:

• Calculate population fitness
• Perform selection, crossover and mutation to

generate the next generation

The following subsections outline the encoding
scheme used to convert an individual’s genetic code
to a neural network structure, the processes of cross-
over and mutation, and the diversity measures and
cultural learning implementation employed for this
work.

3.1.1 Encoding Scheme One of the most crucial
aspects of the model is the translation of genetic codes
to neural network structures. Many encoding schemes
were considered in preparation of the simulator, prior-
itizing flexibility, scalability, difficulty and efficiency.
These included connectionist encoding (Belew, McIn-
erney, & Schraudolph, 1992), node-based encoding
(White & Ligomenides, 1993), graph-based encoding
(Pujol & Poli, 1998), layer-based encoding (Mandischer,
1993), marker-based encoding (Moriarty & Miikku-
lainen, 1995), matrix rewriting (Kitano, 1990; Miller,
Todd, & Hedge, 1989), cellular encoding (Gruau, 1994),
weight-based encoding (Kolen & Pollack, 1991; Sut-
ton, 1986), architecture encoding (Koza & Rice, 1991)
and cascade-correlation architectures (Fahlmann, 1991).

The scheme chosen is inspired by marker-based
encoding, which allows any number of nodes and inter-
connecting links for each network, giving a large number
of possible neural network architecture permutations.
Marker-based encoding represents neural network ele-
ments (nodes and links) in a sequential list. Each ele-
ment is separated by a marker to allow the decoding
mechanism to distinguish between the different ele-
ments and therefore deduce interconnections (Kitano,
1990; Miller et al., 1989).

In this implementation, a marker is given for every
node in a network. Following the node marker, the
node’s details are stored in sequential order in the bit
string. This includes the node’s label and its thresh-
old value. Immediately following the node’s details is
another marker which indicates the start of one or more
node-weight pairs. Each of these pairs indicates a back
connection from the node to other nodes in the net-
work along with the connection’s weight value. Once

Figure 1 Marker-based encoding.
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the last connection has been encoded, the scheme places
an end marker to indicate the end of the node’s encod-
ing.

3.1.2 Crossover As a result of the chosen encoding
scheme, crossover may not operate at the bit level as
this could result in the generation of invalid gene codes.
Therefore, the crossover points are restricted to spe-
cific intervals—only whole node or link values may be
crossed over.

Two-point crossover is employed in this imple-
mentation. Once crossover points are selected, the
gene portions are swapped. The connections within
each portion remain intact, but it is necessary to adjust
the connections on either side of the transferred por-
tion to successfully integrate it into the existing gene
code. This is achieved by using node labels for each
node in the network. These labels are used to identify
individual nodes and to indicate the location of intercon-
nections. Once the portion is inserted, all interconnect-
ing links within the whole gene code are examined. If
any links are now pointing to non-existing nodes, they
are modified to point to the nearest labeled node.

3.1.3 Mutation The mutation operator introduces addi-
tional noise into the genetic algorithm process thereby
allowing potentially useful and unexplored regions of
problem space to be probed. The mutation operator
usually functions by making alterations to the gene code
itself, typically by altering specific values randomly

selected from the entire gene code. In this implementa-
tion, weight mutation is employed. The operator mod-
ifies a weight according to a percentage value chosen
randomly from the range –200% to +200%. Mutation
can alter the value of a start or end marker, thereby
introducing structural novelty into the evolutionary
process.

3.1.4 Cultural Learning Cultural learning is imple-
mented using an imitation scheme similar to that
employed by Hutchins and Hazlehurst (1991, 1995),
Borenstein and Ruppin (2003) and Nolfi et al. (Nolfi
& Parisi, 1996; Nolfi et al., 1994) all of whom employ
a teacher agent’s neural network output value as the
target for pupils. The fittest agents of the current gen-
eration are selected to become teachers that instruct
the next generation. The model therefore employs a
vertical model of cultural transmission, where informa-
tion is passed on from one generation to the next
(Belew, 1990; Boyd & Richerson, 1985).

Individuals are generated from their genetic code
and are immediately exposed to teaching. As an agent
encounters stimuli in its environment, it responds
both behaviorally (emitting a signal through its output
nodes) and verbally (emitting a signal through its ver-
bal nodes—see Figure 2). Pupils iteratively attempt to
imitate the teacher’s verbal output value using cycles of
error back-propagation. These are referred to in the
rest of this article as teaching cycles, where one teach-
ing cycle is equivalent to a single exposure to stimulus
and a subsequent error back-propagation.

Figure 2 Agent communication architecture.
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The model is not restricted to imparting only innate
knowledge (knowledge that is genetically inherited and
that agents have at their disposal from birth). In other
words, teacher agents may impart knowledge that they
themselves acquired culturally during their own learn-
ing phase.

3.2 Diversity Measures

A common view of the evolutionary process is that
diversity enhances the performance of a population by
providing more opportunities for evolution. A homo-
geneous population offers no advantage for improve-
ment as the entire population is focused on a particular
portion of the search space. By contrast, a diverse popu-
lation will simultaneously sample a large area of search
space, providing the opportunity to locate good solu-
tions.

Previous work has included the measurement of
both genotypic diversity [typically through edit distances
(Gusfield, 1997; O’Reilly, 1997) between genomes] and
phenotypic diversity [including entropy measurement
(Rosca, 1995), crowding (De Jong, 1975) and niching
(Mahfoud, 1995a, 1995b)]. In addition, much research
has focused on promoting, maintaining or re-introducing
diversity into evolving populations of solutions in order
to achieve maximum performance. This includes work
on mating schemes (Booker, 1985; Collins & Jefferson,
1991, Davidor, 1991; Hillis, 1990; Muhlenbein, 1989;
Spiessens & Manderick, 1991) and fitness sharing (Deb
& Goldberg, 1989; Goldberg & Richardson, 1987).

The following sections outline the implementa-
tion for the genotypic and phenotypic diversity meas-
ure employed in this work. The population’s diversity
is measured at the start of each generation, before any
cultural learning takes place.

3.2.1 Genotypic Diversity The diversity measure
employed in this work was attained following the
implementation of preliminary cruder measures: node
and link diversity.

Preliminary Measures Node diversity simply com-
pares the number of nodes in each agent’s neural
network with all other agents in the population. Link
diversity compares the number of links in each agent’s
neural network with those present in all other agents in
the population. Both measures employ a Euclidian

distance measure to compare two individuals and the
global diversity measure is an average of all these dis-
tances.

To test the measures, an experiment was con-
ducted using the simple 5-bit parity task. A population
of 100 agents was presented with 5-bit patterns and
attempted to identify whether the number of ones in
each pattern was odd or even. Fitness was assigned
according to the mean square error of an agent’s net-
work. In order to simplify the experiment to examine the
effects of these measures, the population employed
only population learning to evolve new networks.
Both diversity measures were applied to each genera-
tion at birth and the experiment was conducted for 400
generations.

Figure 4 shows the averaged results of 20 experi-
ment runs. Both node and link diversity exhibit a similar
trend but the two are significantly different to a 95%
confidence level (p value < 0.0001, paired t-test).

Final Measure In order to refine the diversity meas-
ure, more information than provided by simple raw
node and link counts is necessary. To achieve this, we
consider the encoding of each agent’s neural network
in more detail, in an effort to combine node and link
information to attain a better representation of the dif-
ferences between two individuals.

It is important to note that the encoding method
imposes two restrictions on a more detailed diversity
scheme: The first is that each item in the encoding is a
real number, rather than a simple on/off switch. This
makes the scheme more suited toward distance meas-
ures. Secondly, an encoded genecode is circular in
nature, that is, the end of a genecode wraps back to the
start. This implementation allows crossover to occur
naturally, but gives some restrictions for the purposes
of direct comparisons between two genecodes.

The first of these restrictions is easily dealt with.
A Euclidian distance measure can easily be found
between two items in the gene codes being compared.
The second restriction is more complex: Using a tradi-
tional, naive approach, two genecodes could be directly
compared using the Euclidian measure above. How-
ever, such a comparison would yield a high diversity
rate for two identical, but rotated, strings. Since the
computational time required to search each pair of
strings and correct any rotational deficiencies (which
may or may not exist) would be impractical, a differ-
ent method had to be devised.
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Our proposed method examines the content of the
genotype and breaks each chromosome into meaning-
ful portions, where a meaningful portion is defined as
data contained between a start and end marker. In other
words, each meaningful portion contains data about a
single node and all the links emanating from it to other
nodes. Once all meaningful portions have been extracted
from the string, any remaining data is kept aside (main-
taining its contiguous structure) and labeled as spurious.
It is worth noting that this data should be considered
dormant rather than purely redundant as a crossover or
mutation may reactivate previously isolated spurious
data.

Having isolated the meaningful and spurious gene
portions from the pair of gene codes being examined,

the algorithm proceeds to examine meaningful por-
tions of each genecode. The length of each portion
corresponds exactly to the number of links that ema-
nate from each node. Clearly, meaningful portions
will not all be of equal length. As a result, an approach
must be devised to choose pairs of portions that most
merit comparison. For instance, it is not worth com-
paring an input node, with no incoming links, with an
output or hidden node, but it is reasonable to assume
that two hidden nodes with an approximately similar
number of links are suitable and useful for compar-
ison.

Thus, the algorithm selects pairs of meaningful
gene code portions of equal (or as similar as possible)
length from the gene codes being examined (Figure 3)

Figure 3 Genotypic diversity measure.

 at UNIV OF GEORGIA LIBRARIES on May 26, 2015adb.sagepub.comDownloaded from 

http://adb.sagepub.com/


322 Adaptive Behavior 14(4)

and performs a Euclidian distance measurement for
each value to determine their similarity.

.

The distance measures for each pair of portions
are averaged together to give a diversity measure for
the two full length chromosomes.

Once all pairs of meaningful gene portions have
been examined for a given pair of genecodes, the algo-
rithm performs the same comparison task for the spu-
rious data. Since, as previously argued, such data is
dormant rather than redundant, it merits comparison
as much as active meaningful portions.

Each member of the population is compared with
every other member, and the diversity measure is
averaged over the entire population, resulting in a glo-
bal diversity measure:

.

The new diversity measure takes into account both
node and link information present in each neural net-

work encoding. In order to determine how the new
diversity measure compares with the cruder measures
examined earlier, a new experiment was conducted.
Again, a population of 100 agents attempted to solve
the 5-bit parity problem using only population learn-
ing for 400 generations. Figure 5 shows the results of
the new diversity measure along with the cruder meas-
ures examined earlier. Interestingly, the new measure
falls between the node and link diversity values, show-
ing a very similar trend, with a sharp initial fall fol-
lowed by stabilization, indicative of convergence.

This result shows that the new measure correlates
with cruder node and link counts in terms of its overall
trend. In addition, the new measure exhibits consider-
ably less noise than either of the two previous methods.
While it is not possible to objectively state that the
measure is necessarily more accurate due to its more
thorough examination of each genome, it is important
for a useful measure to consider as much genetic
information as possible.

3.2.2 Phenotypic Diversity The approach employed
to measure the phenotypic diversity of the population

Figure 4 Node and link count diversity measures.
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is inspired by the work of McQuesten (2002). Specifi-
cally, the phenotypic diversity measure examines the
actual response of an agent to a given stimulus, rather
than relying on pure fitness measures, giving a more
meaningful result. Typically, the approach undertaken
in this work provides each agent with a number of stim-
uli to its neural network input layer, records the agent’s
neural network response and compares all the popu-
lation’s responses using a Euclidian distance meas-
ure:

.

The number of stimuli given to each agent is lim-
ited in scope. While it would be possible to examine
the response of the entirety of an agent’s cognitive
capacity, such an approach would be impractical for
the more complex problem domains detailed in this
work. Instead, the neural network’s behavioral response
is sampled using a number of fixed stimuli for each
member of the population. Thus, the algorithm is com-
prised of the following steps:

• Take a pair of neural network agents from the
population

• Present each neural network with the following
patterns:
• All 0s
• All 1s
• Checkerboard 0 (alternating 0s and 1s, begin-

ning with 0)
• Checkerboard 1 (alternating 0s and 1s, begin-

ning with 1)
• Compare each agent’s response using a Euclidian

distance measure
• Average the distance measure over the four stimuli

The algorithm is repeated until each agent has
been compared with all other agents in the population.
The distance measures are averaged to produce a glo-
bal phenotypic diversity measurement.

3.3 Tasks

The following subsections outline each of the problem
tasks assigned to the populations, including the input/
output architecture required for each task.

Figure 5 New diversity measure compared with raw node/link count.

distance outputa outputb–( )2=
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3.3.1 Bit Parity The bit parity problem, also known
as the XOR problem, is simple to describe but non-
trivial for a neural network to solve. Fundamentally,
the bit parity problem requires a neural network to
determine whether a given bit string of length n con-
tains an odd or even number of 1s (or 0s). For the pur-
poses of this work, 5-bit parity was chosen as the first
experiment set, representing a moderately difficult
problem for a neural network to solve, as it must dis-
tinguish correctly between 32 different bit patterns.

3.3.2 Tic-Tac-Toe Tic-tac-toe, or three in a row, is a
very simple two player game played on a 3 × 3 board.
Each player is assigned either the X or O symbol and
takes turns placing one symbol onto the board at a
time. Each player attempts to place three of his/her
pieces in a horizontal, vertical or diagonal line of three.

Agents play games against a perfect player, whose
minimax engine is modified such that the first move is
randomized, allowing agents to play games of some
variety. Fitness is assigned according to the length of
the game. In other words, agents are rewarded for pro-
longing the game by forcing the minimax player to a
draw. Since it is possible (but difficult) to beat the
modified minimax player, a win for the agent is con-
sidered equal to a draw.

Each agent’s neural network structure contains 18
input nodes, 2 for each board position where 01 is X,
10 is O and 11 is an empty square. Nine output nodes,
one corresponding to each board position, are used to
indicate the agent’s desired move. The node with the
strongest response corresponding to a valid move is
taken as the agent’s choice. The simulator allows agents
to evolve any number of hidden layers each with an
unrestricted number of nodes, giving maximum flexi-
bility to the evolutionary process.

During the teaching process, a teacher agent plays
while the pupil observes. At each move, both the pupil
and teacher emit some verbal output in response to the
current board position. At every teaching cycle, the
pupil’s verbal output is corrected with respect to the
teacher’s using error back-propagation.

3.3.3 Connect-Four The game of connect-four is a
two-player game played on a vertical board of 7 × 6
positions into which pieces are slotted from above.
Each player is given a number of colored pieces (one

color per player) and must attempt to create horizon-
tal, vertical or diagonal piece-lines of length four. Play-
ers place one piece per turn into one of the seven slots.
The piece then falls down to the lowest free position in
the chosen column, creating piles, or towers, of pieces.
If a column is full (i.e., when the stack of pieces
reaches 7), the slot is no longer available for selection.

As in the tic-tac-toe game, agents play games
against a modified perfect player and fitness is assigned
as before. At each move, the current board position is
taken and the agent’s pieces are added iteratively into
each slot. At each iteration, the network is shown the
board position through 42 input nodes. Unlike the tic-
tac-toe game, each neural network has only one output
node and the board position which produces the strong-
est output response is deemed to be the agent’s pre-
ferred board position.

4 Results

In order to examine the effects of cultural learning, the
experiments conducted employ two populations: one
using only population learning to evolve, and the other
using both population and cultural learning. Popula-
tions of 100 agents are evolved for 400 generations.
Crossover is set at 0.6, mutation at 0.02 and the number
of teaching cycles at five. These values were found
empirically to produce the best results.

When cultural learning is applied, teachers are
selected from the previous generation. As generation 1
does not yet have teachers available, it cannot perform
cultural learning and therefore employs population
learning alone. For this reason, results presented for
the cultural learning population begin at generation 2,
the point where cultural learning is first applied.

Results shown are averages of 20 independent
runs and error bars represent 1 standard deviation from
the mean.

The following subsections outline results obtained
for the population’s fitness and diversity measures.

4.1 Fitness

The first set of results examined show both the acquired
and innate fitness levels of the two populations.
Acquired fitness is measured at the end of an agent’s
life, after any cultural learning is applied. Innate fitness
is measured at the beginning of the agent’s lifetime
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and corresponds to the agent’s genotypic performance.
Naturally, innate fitness for the population employing
population learning alone corresponds to its acquired
fitness since no cultural learning occurs.

4.1.1 Bit Parity The first task to be attempted by the
two populations is the 5-bit parity problem. Each
agent in the population is presented with a 5-bit binary
pattern and must determine whether the number of
ones is odd or even (and then respond with either a one
or a zero through its output node).

Figure 6 shows the average acquired fitness for
the two populations over the course of the experiment.
It is clear from these results that while population learn-
ing is capable of steady (if slow) progress towards an
optimal solution, cultural learning greatly enhances
the population’s performance.

The innate fitness of the two populations is pre-
sented in Figure 7 along with the acquired fitness values
for the cultural learning population, for comparison
purposes. The figure shows the average fitness of the
population employing population learning and the fit-
ness values for the cultural learning population before
and after teaching is applied.

The results show an interesting trend: While the
three curves begin close together, the cultural learning
population’s innate fitness quickly deteriorates and
becomes considerably lower than that of the popula-
tion-learning population. However, when teaching is
applied, the cultural learning population’s fitness
improves dramatically, easily out-performing popula-
tion learning.

4.1.2 The Game of Tic-Tac-Toe The second task to
be attempted by each population is the game of tic-
tac-toe. Agents play a number of games and fitness is
calculated according to their performance. Figure 8
shows the average acquired fitness of both popula-
tions throughout the experiment run.

It is clear from these results that the population
employing cultural learning outperforms the popula-
tion employing population learning alone from the
start of the experiment. While the population-learning
population stabilises at around 0.825, the population
employing cultural learning achieves fitness values of
0.9 and above.

Figure 9 shows three fitness values: one for the
population employing population learning alone, one

Figure 6 Bit parity average fitness.
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Figure 7 Bit parity average fitness before and after teaching.

Figure 8 Tic-tac-toe average fitness.
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for the cultural learning population prior to teaching
(innate fitness) and the last showing the cultural learn-
ing population after teaching is applied.

The population employing cultural learning per-
forms very differently before and after teaching is
applied. Prior to teaching, the cultural learning popu-
lation’s fitness is considerably lower than that of the
population learning population. Indeed, the popula-
tion’s genotypic fitness (the fitness measured before
any cultural influence is applied) is consistently low
and appears to be stable throughout the experiment.

4.1.3 The Game of Connect Four The final task
selected for this set of experiments is the game of con-
nect-four. The results illustrated in Figure 10 clearly
show the effect of cultural learning on the population.
The population employing population learning alone
achieves fitness levels of around 0.6 compared with
close to 0.8 for the cultural learning population.

Figure 11 shows the fitness values for the popula-
tion employing population learning alone, the cultural
learning population prior to teaching (innate fitness)
and the cultural learning population after teaching

takes place. Once again, as in previous experiments, cul-
tural learning appears to be selecting individuals for
their genetic ability to learn, rather than for their innate
ability to solve a particular task. This is illustrated by
the fact that the fitness values for the population employ-
ing cultural learning are considerably lower prior to
teaching than those of the population employing pop-
ulation learning alone.

4.2 Diversity

This section outlines the results obtained for the
diversity measures employed throughout these experi-
ments. The section is divided into two subsections.
The first, genotypic diversity, examines the differ-
ences between individuals at a genetic level. The sec-
ond, phenotypic diversity, examines the behavioral
differences between individuals in the population.
Again, results presented are averaged from 20 inde-
pendent runs.

4.2.1 Genotypic Diversity The genotypic diversity
measure examines the genetic makeup of each indi-

Figure 9 Tic-tac-toe average fitness before and after teaching.
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Figure 10 Connect-four average fitness.

Figure 11 Connect-four average fitness before and after teaching.
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vidual agent and compares it with all other agents in
the population. The measure is normalized to a value
in the range [0, 1], where 1 is highly diverse and 0 is
highly similar.

Bit Parity Given the relatively low complexity of the
bit parity problem, one would expect that the evolu-
tionary process would quickly converge towards a
genotypic architecture suitable for the problem. This
is illustrated by Figure 12 which displays the results
obtained from the genotypic diversity measure for the
population employing population learning and the
population employing both population and cultural
learning. Both populations quickly converge, showing
a sharp drop in genotypic diversity within the first 100
generations, implying that the evolutionary process has

selected what it considers to be an optimal agent neu-
ral network architecture for the problem.

However, while both populations show a similar
overall trend the population employing cultural learning
maintains a higher genotypic diversity level through-
out the experiment. While the difference is not large, it
is significant and shows that cultural learning is con-
tributing to population diversity, something which may
help explain its higher level of overall fitness.

Table 1 shows the average, maximum and minimum
diversity values for both populations, taken as an aver-
age over the whole experiment set. Again, it shows
that cultural learning is generating a higher level of
average genotypic diversity. The minimum diversity
value for the cultural learning population is 0.28, com-
pared with 0.22 for population learning. This implies

Figure 12 Bit parity genotypic diversity.

Table 1 Bit parity average genotypic diversity.

Population Average diversity Maximum diversity Minimum diversity SD

Population learning 0.279833215 0.9496164 0.2230475 0.00941449

Cultural learning 0.360330611 0.9791067 0.2825165 0.01622283
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that cultural learning is maintaining a higher level of
population diversity throughout the experiment run.
The results are statistically significant to a 95% confi-
dence level (p value < 0.0001, paired t-test).

Tic-Tac-Toe Figure 13 shows the results for the geno-
typic diversity measure throughout the experiment run.
The tic-tac-toe experiment follows the pattern found
in the bit parity experiment run, that is, both popula-
tions begin at a high level of diversity but diverge in
behavior after generation 100. In general, diversity is
maintained for a considerably longer period in both
populations when compared with the results obtained
for the parity problem. This is most likely due to the
increased complexity of the problem as a more com-

plex network architecture must be found to solve the
problem adequately.

It is clear from the population’s divergence in
diversity following generation 100 that cultural learn-
ing is aiding the population in maintaining a higher
genotypic diversity than population learning alone.
The cultural learning population converges at genera-
tion 300, compared with generation 150 for popula-
tion learning alone.

Cultural learning is capable of maintaining a high
level of diversity for the majority of the experiment
run, only converging in the last 100 generations, which
may explain its superior performance compared with
population learning alone. Table 2 shows the average,
maximum and minimum genotypic diversity values

Figure 13 Tic-tac-toe genotypic diversity.

Table 2 Tic-tac-toe average genotypic diversity.

Population Average diversity Maximum diversity Minimum diversity SD

Population learning 0.662021098 0.9496164 0.5255245 0.019489483

Cultural learning 0.75848603 0.9647170 0.5668700 0.013715094
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taken over the experiment run. While both popula-
tions have similar maximum and minimum diversity
values, it is clear from the average diversity value that
cultural learning is providing consistently higher diver-
sity values than population learning alone. The similar
maximum and minimum values are merely indicative
of the fact that both populations begin at a similar high
level of diversity and eventually converge at a similar
low level. The results are statistically significant to a
95% confidence level (p value < 0.0001, paired t-test).

Connect-Four Figure 14 shows the results obtained
for the genotypic diversity measure for both populations
over the course of the experiment. As in the previous
experiments, both populations begin the experiment
with very high levels of genotypic diversity, consist-

ent with what one would expect from randomly gener-
ated neural network populations. By generation 100,
the two populations have clearly diverged with respect
to their diversity levels. The cultural learning population
is maintaining consistently higher levels of genotypic
diversity than the population employing population
learning alone.

Table 3 shows the average, maximum and mini-
mum values for both populations, taken over the whole
experiment run. It is evident from these figures that
cultural learning is enhancing the population’s average,
maximum and minimum diversity values. This result
is consistent with the previous experiment sets, although
the maximum diversity levels are considerably differ-
ent. Since this problem is considerably more complex
to solve than the previous experiments, it is likely that

Figure 14 Connect-four genotypic diversity.

Table 3 Connect-four average genotypic diversity.

Population Average diversity Maximum diversity Minimum diversity SD

Population learning 0.271538822 0.7920000 0.1531017 0.03338738

Cultural learning 0.461263027 0.9482010 0.3080865 0.033095317
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the population employing cultural learning is exhibit-
ing its effects early in the experiment, illustrated by
the significantly higher diversity values towards the
beginning of the experiment.

4.2.2 Phenotypic Diversity Phenotypic diversity
examines the difference in behavior between agents in
a population by observing the outputs for a given
number of environmental stimuli. The measure gives
values in the range [0, 1], where 1 is completely diverse
and 0 is completely similar.

Bit Parity Figure 15 shows the results obtained from
the phenotypic diversity measure for both populations
throughout the experiment run. The populations are

effectively equivalent in terms of phenotypic diversity
for the first 100 generations, but then begin to diverge,
with cultural learning increasing its phenotypic diver-
sity level and maintaining a higher level throughout
the rest of the experiment.

Table 4 shows the average, maximum and mini-
mum diversity values for both populations taken over
the entire experiment. It is clear from these figures that
cultural learning produces a higher level of pheno-
typic diversity and is capable of higher maximum and
minimum diversity values. The results are statistically
significant to a 95% confidence level (p value < 0.0001,
paired t-test).

Tic-Tac-Toe Figure 16 shows the results obtained for
this measure for both populations for the game of tic-

Figure 15 Bit parity phenotypic diversity.

Table 4 Bit parity average phenotypic diversity.

Population Average diversity Maximum diversity Minimum diversity SD

Population learning 0.139159874 0.3615294 0.1133413 0.000521302

Cultural learning 0.185220491 0.5565765 0.1338845 0.000846548
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tac-toe. Both populations begin, as expected, with a
similar level of phenotypic diversity but diverge after
generation 100. Following this, the cultural learning
population exhibits a significantly higher phenotypic
diversity than does the population employing popula-
tion learning alone.

Table 5 shows the average, maximum and mini-
mum phenotypic diversity values obtained for the entire
experiment run. The similar maximum diversity val-
ues for the two populations are indicative of the fact
that both begin at a similar level of phenotypic diver-
sity. However, the considerably different minimum
diversity measurements obtained by the two popula-
tions show that the cultural learning population ends
the experiment with a high level of phenotypic diver-

sity. This, coupled with the significantly higher aver-
age phenotypic diversity, shows that cultural learning
is providing the population with the ability to generate
and sustain novel behaviors in its population through-
out the experiment run.

Connect-Four Figure 17 shows the results obtained
from the phenotypic diversity measure for both popu-
lations for the game of connect-four. The populations
show a similar trend to the last experiment, as they
exhibit very similar levels of phenotypic diversity for
the first half of the experiment, only diverging after
generation 200. Following this, the cultural learning
population shows increased phenotypic diversity, ris-
ing until the end of the experiment, while the popula-

Table 5 Tic-tac-toe average phenotypic diversity.

Population Average diversity Maximum diversity Minimum diversity SD

Population learning 0.25763194 0.3341801 0.2117307 0.00074964

Cultural learning 0.324021795 0.3578060 0.2851217 0.00016451

Figure 16 Tic-tac-toe phenotypic diversity.
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tion employing only population learning shows
significantly lower levels.

Table 6 shows the average, maximum and mini-
mum phenotypic diversity levels obtained over the
experiment run. It is evident from these results that
cultural learning is capable of producing populations
with significantly higher levels of phenotypic diver-
sity than population learning alone. The results are
statistically significant to a 95% confidence level (p
value < 0.0001).

5 Discussion

There are a number of trends that can be observed by
examining the results obtained for these three bench-

mark problems, some of which have already been ana-
lyzed in previous research and some which are novel.

Firstly, it is clear that the cultural learning process
is producing two distinct effects on the population. One
effect is to improve the population’s average acquired
fitness. The selection process selects individuals in the
cultural learning population based on their fitness after
teaching is applied and not on the more highly coupled
geno-phenotypic mapping employed by population
learning. As a result, the cultural process selects indi-
viduals based on their phenotypic ability and not on
their underlying genetic make-up.

This leads to the second effect, which becomes
evident once the innate fitness of the cultural learning
population is examined. The innate fitness of the popu-
lation (measured before any cultural learning is applied)

Table 6 Connect-four average phenotypic diversity

Population Average diversity Maximum diversity Minimum diversity SD

Population learning 0.238738262 0.3540330 0.1776206 0.000935385

Cultural learning 0.301066895 0.3857076 0.2144768 0.00166501

Figure 17 Connect-four phenotypic diversity.
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shows significant deterioration when compared with
both the acquired fitness and population learning
values. Thus, it appears that the population’s innate
fitness falls significantly during the course of each
experiment, regardless of the task.

As the selection process examines individuals at the
end of their lifetimes (when cultural learning has already
been applied), the underlying genetic affinity to a prob-
lem is effectively hidden. However, the evolutionary
process must still ensure that individuals in a popula-
tion are in a position to receive instruction from others
in the population. Thus, the genotype of each agent is
being selected on the basis of an affinity to learning,
rather than a direct affinity to the problem itself.

This result is related to previous work: Nolfi et al.
Nolfi and Parisi (1993, 1994) found that their evolved
networks were more suited to learning than solving
the assigned task, a result that was not the intention of
the experimenters. Sasaki and Tokoro (1997) also
found that the ability to learn can be more important
than the ability to solve a task.

The fact that learning should be important to a pop-
ulation is not in itself surprising. However, the fact
that these effects occur with some regularity in such a
variety of experiment settings and tasks suggests that
it is a more general trend worthy of further analysis.
We argue that the results obtained using our diversity
measures can provide further insight into this area.

The diversity measures employed examine both
genotypic and phenotypic diversity in an attempt to
further understand the effects of the cultural process on
the population. It is clear that the cultural learning proc-
ess is producing populations that are both genotypi-
cally and phenotypically more diverse than those using
only population learning. Increased diversity is gener-
ally accepted as a desirable feature of an evolutionary
algorithm, so its presence may explain the increase in
fitness exhibited by the cultural learning process.

We posit that this increase shows that the selection
process is no longer selecting individuals based on their
genetic predisposition to solving a particular task.
Instead, an individual’s genotype is masked by the cul-
tural process, evidenced further by the fact that while
the population’s acquired fitness may be high, its
innate fitness suffers considerably.

The population increasingly relies on the cultural
process to produce fit individuals and thus the engine
of evolutionary progress is transferred to the culture
which is passed down through the generations, resulting

in a prolonged retention of genotypic diversity within
the population. Phenotypic diversity is also increased as
a result, and populations begin to fill with individuals
that are both genetically and behaviorally different from
one another. Thus, cultural learning’s ability to produce
fitter populations may be credited to both its ability to
transmit information acquired through individual life-
times and its ability to retain high population diversity.

6 Summary

This work focuses on the effects of the cultural learning
process on a population of evolving neural network
agents. A population employing population learning
alone and a population employing both population and
cultural learning are tested using three benchmark tasks:
5-bit parity, the game of tic-tac-toe and the game of
connect-four. In addition to studying the effects of cul-
tural learning on the acquired and innate fitness of the
populations, we employed both genotypic and pheno-
typic diversity measures to provide further insight into
the cultural learning process.

It is clear from this and previous work that the
addition of cultural learning provides an increase in the
performance of the population. In addition, the results
show that the cultural learning process effectively masks
the population’s underlying genetic affinity to its envi-
ronment and that the population comes to increasingly
rely on cultural learning for its survival. Furthermore,
the results show that cultural learning is accompanied
by increased levels of diversity within the population,
a contribution which may help explain its improved
performance.

Future work will examine the effect of cultural learn-
ing on both fitness and diversity in a dynamic environ-
ment. In particular, we will focus on the development
of a more formal model in the hopes of showing the
effects of cultural learning on population diversity in a
more general sense. Finally, future work will include
the development of more varied and expressive meas-
ures of both genotypic and phenotypic diversity.
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