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Abstract Aesthetic experience is an important aspect of creativity and our percep-
tion of the world around us. Analogy is a tool we use as part of the creative process
to translate our perceptions into creative works of art. In this paper we present our
research on the development of an artificially intelligent system for the creation of
art in the form of real-time visual displays to accompany a given music piece. The
presented system achieves this by using Grammatical Evolution, a form of Evolu-
tionary Computation, to evolve Mapping Expressions. These expressions form part
of a conceptual structure, described herein, which allows aesthetic data to be gath-
ered and analogies to be made between music and visuals. The system then uses the
evolved mapping expressions to generate visuals in real-time, given some musical
input. The output is a novel visual display, similar to concert or stage lighting which
is reactive to input from a performer.

Keywords Genetic algorithms · Evolutionary art and design · Genetic
programming · Hybrid systems · Computational analogy · Aesthetics

1 Introduction

Analogy is the comparison of separate domains. The process of analogy has strong
applications in communication, logical reasoning, and creativity. A human artist will
often take some source material as inspiration and create an equivalent, or related
art piece in their chosen artistic domain. This process of metaphor is the equivalent
of making an artistic analogy and has been used successfully in a literal form by
artists like Klee [1], Kandinsky [2] and more recently Snibbe [3]. Similar approaches
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are often taken in a less direct form by stage lighting designers or film soundtrack
composers.

Our aim is to make computational analogies between the domains of music and
visuals by making use of aesthetic models, computational analogy, and grammatical
evolution.

This work has direct practical applications for live performance and stage lighting
design. The work in this paper may also have less direct applications in user inter-
face and user experience design with particular use in the automatic generation of
user interfaces and subconscious feedback mechanisms. Beyond these application
domains, our research motivation also includes gaining insight into aesthetics and
analogical reasoning.

1.1 Creating Aesthetic Analogies

One of the major challenges of computational art is to understand what makes an
art piece good. Indeed the cultural and contextual influences of an art piece may
define what makes it emotive, such as Duchamp’s Fountain [4] or René Magritte’s
The Treachery of Images [5], but beyond that we rely on the aesthetics of an object
to decide if it is pleasurable to perceive. Aesthetics provide an objective description
of this perception. We use this objective description as a tool upon which to build
our analogies.

Every domain has its own aesthetic measures—musical harmony, visual symme-
try, rhythm and combinations thereof. In some cases, these measures can be used to
describe objects in more than one domain. Symmetry, for example, can describe both
a visual image, and a phrase of music. The example we demonstrate in this paper
is harmony. Musical harmony can be measured by the consonance or dissonance of
musical notes. Visual harmony can be measured directly as the harmony of colours.

The analogy we are hoping to create is described as follows: given some musical
input with harmony value x , a mapping expression can be created to generate a
visual output with a harmony value y such that x � y. Furthermore, we posit that
when performed together, both input music and output visuals will create a pleasing
experience. In other words, can we take music and create a visual with a similar
harmony and will they go together?

For this simple example, it is clear that a suitable expression could be created by
hand with some knowledge of music and colour theory. However, if we extend the
system to include more aesthetic measures, such as symmetry, intensity, contrast or
granularity, defining an analogy by use of a mapping expression becomes far more
complex. While developing a system to capture more complex mappings is beyond
the scope of this paper, we aim to build the system such that it may be extended to
do so.
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1.2 Grammatical Evolution and Mapping Expressions

A genetic algorithm (GA) provides a useful method of traversing an artistic search
space, as demonstrated byBoden andEdmonds in their 2009 review [6].Grammatical
evolution (GE) [7], in particular allows us to provide a simple grammarwhich defines
the structure of mapping expressions which can be evolved using a GA. This allows
us to flexibly incorporate aesthetic data, operators and constants while producing
human readable output. Importantly, we make no assumptions about the relation-
ships between input and output. This approach does not restrict the output to any
rigid pattern; potentially allowing the creation of novel and interesting relationships
between any two domains, music and visuals or otherwise.

No single set ofmapping expressionswould be capable of creating pleasing output
in every circumstance. In this respect, we intend to find suitable expressions for a
specific input, such as a verse, chorus or phrase. Expressions may then be used in
real-timewhen required andwould handle improvisation or unexpected performance
variations. Expressions produced byGrammatical Evolution are naturally well suited
to this task as they can be stored or loadedwhen necessary, and evaluated in real-time.

1.3 Contributions and Layout

The main contribution of this work is an implementation of Grammatical Evolution
using music and empirically developed aesthetic models to produce novel visual dis-
plays. Secondary contributions include a structural framework for aesthetic analogies
used to guide the gathering of data and development of evolutionary art using map-
ping expressions, and preliminary results produced by our implementation of the
system.

The layout of this paper is as follows. Section2 outlines related work in the areas
of computational analogy, computational aesthetics, and computational art. Section3
introduces our proposedmethod including a general description of our analogy struc-
ture, aestheticmodels and the structure of our evolutionary system. Section4 presents
the details of our implementation in two distinct phases, the evolutionary phase
(Sect. 4.1) and the evaluation phase (Sect. 4.2). Our results are presented in Sect. 5
followed by our conclusion in Sect. 7 including a brief discussion of future work
(Sect. 6.3).

2 Related Work

“Analogy underpins language, art, music, invention and science” [8]. In particular,
Computational Analogy (CA) combines computer science and psychology. CA aims
to gain some insight into analogy making through computational experimentation.
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As a research domain, it has been active since the late 1960s, accelerated in the 1980s
and continues today. Computational analogy systems historically fall into three main
categories: symbolic systems, connectionist systems and hybrid systems. Symbolic
systems make use of symbolic logic, means-ends analysis and search heuristics.
Connectionist systems make use of networks with spreading activation and back-
propagation techniques. Hybrid systems often use agent based systems taking aspects
of both symbolic and connectionist systems. For further reading, see [9, 10].

Birkhoff is often cited as one of the first to consider aesthetics from a scientific
point of view. His simplistic ‘aesthetic measure’ formula, M = O/C , was simply
the ratio of order (O) to complexity (C) [11]. Of course, this is over simplified and
abstract, but it did begin a long running discussion on aesthetics and how we can use
aesthetics to learn about the higher functions of human cognition.

More recently, the discussion has been reignited by Ramachandran who has out-
lined a set of 8 ‘laws of artistic experience’ [12]. In this paper a number of fac-
tors are outlined which may influence how the human brain perceives art. Some of
these factors are measurable, such as contrast and symmetry, but others remain more
abstract such as the groupingof figures.Nonetheless, it has inspired further discussion
[13–16].

Within specific domains, heuristics can be formalized and used to generate deriva-
tive pieces in a particular style or to solve particular challenges in the creation of the
art itself. GAs in particular have proven to be quite effective due to their ability to
traverse a large search space. In music for example, GAs have been used to piece
together particular musical phrases [17], generate complex rhythmic patterns [18]
or even generate entire music pieces [19]. Similar systems have also been used to
create visuals [20, 21], sculpture [22] and even poetry [23].

Indeed the use of aesthetic measures in combination with GAs has also been
reviewed [24] and an approach has been outlined to demonstrate the potential appli-
cation of Multi-Objective Optimization to combine these measures [25]. While the
system does produce computational art that may be described as aesthetic, it is also
limited strictly by the aesthetic measures used, without any artistic context.

It is clear that computational systems can work in tandem with aesthetics to
generate art and explore the possible applications of computational intelligence. Up
to this point however, popular approaches have been remarkably rigid. Our work
aims to explore a more flexible approach and perhaps discover a more natural artistic
framework through analogy.

3 Proposed Method

3.1 Analogy Structure

We make use of a conceptual structure to provide a basis for our aesthetic data and
analogies. The structure is shown in Fig. 1 with measurable aesthetic attributes in
separate domains which are connected by a set of mapping expressions which may
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Fig. 1 Analogy structure overview. TheMapping Expressions, E1 to En , are encoded as chromo-
somes and evolved using the genetic algorithm. Extracted from [26]

be evolved using grammatical evolution. The implementation in this paper uses a
single attribute in each domain, however, the structure is not restricted to a bijective
mapping.

Some aesthetic attributes may be more suitable than others for use in a structure
as described in Fig. 1. Harmony is selected for use in this paper as it has a strong
impact on the overall aesthetic quality of an art piece, and can be measured quite
easily in separate domains. In music, the harmony of notes being played is often
referred to as the consonance—or conversely, dissonance—of those notes. While the
timbre of notes has an impact on consonance, an estimate can be obtained from pitch
alone. In the visual domain, colour harmony, or how pleasing a set of colours are
in combination, can be measured as a function of the positions of those colours in
some colour space, such as RGB (red, green and blue dimensions), CMYK (cyan,
magenta, yellow and black dimensions), HSV (hue, saturation and value dimensions)
or LAB (one lightness dimension and two opposing colour dimensions of red/green
andyellow/blue). The conceptual similarities betweenmusical consonance andvisual
harmony provide a convenient and understandable starting point.

Consonance values for any two notes have been measured [27–29] and numerous
methods have been proposed that suggest a consonance value can be obtained for
larger sets of notes [30–33]. The simplest general approach is to sum the consonances
for all pairs of notes in a set. This provides a good estimation for chords with the
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same number of notes and can be normalized to account for chords of different
cardinalities.

For this preliminary implementation, we enforce a number of restrictions. Firstly,
we restrict the number of inputs to two musical notes at any one time. This simplifies
the grammar and allows us to more easily analyse the output mapping expressions.
Secondly, musical harmony is calculated using just 12 note classes within a single
octave. This helps to avoid consonance variations for lower frequencies.

The consonance values for each note classes were gathered in a study whereby
test subjects were presented with two note pairs and asked to select the note pair
that sounded more consonant. By using this two alternative forced choice approach,
together with a novel ranking algorithm, a number of issueswhich affected the results
of previous studies were avoided.

The subjectivity of responses was reduced by forcing two pairs to be directly
compared. Contextual issues, where the order in which pairs were ranked might
affect their actual ranking, were also avoided in this way. The ranking algorithm
used a graph based approach which allowed a full ranking of all 12 note classes to
be found with a minimal number of comparisons. This was particularly important as
subject fatigue had a large impact on the quality of responses and can increase in a
very short space of time. The performance of the ranking algorithm has been further
analysed and compared to other ranking approaches demonstrating the effectiveness
of the algorithm for this application [34].

The observed consonance values were then compared to previous studies and
historical observations, showing a high correlation. Figure2 shows the consonance
values for note pairs used based on this study [29].

Similarly, colour harmony values can be measured and modelled [35–37]. While
the harmony ofmore than 2 coloursmay be obtainedwith a similar approach tomusic

Fig. 2 Consonance Values
for musical intervals used to
calculate musical Harmony
Values. Extracted from [26]

2 4 6 8 10

2

4

6

8

Semitone offset

Av
er

ag
e

C
on

so
na

nc
e

R
an

ki
ng

Musical Consonance Values



A System for Evolving Art Using Supervised Learning and Aesthetic Analogies 51

Fig. 3 Average Colour
Harmony values. Extracted
from [26]
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chords, the pattern in which colours are displayed adds an extra level of complexity.
To combat this, we assume our visual display is not a strict two dimensional image,
but rather a pair of lights emitting coloured light into some space. For example, a
pair of LED stage lights for a small musical performance.

The harmony values for colour pairs were obtained using the same methodology
used to obtain musical data. A two alternative forced choice style study using the
same ranking algorithm was employed to prevent subjectivity and contextual pitfalls
and to reduce subject fatigue. The results were compared, once again, to previous
studies and historical observations. Figure3 shows the harmony values obtained in
this study and used in the work presented here.

3.2 Evolutionary System

Our evolutionary approach is based upon Grammatical Evolution [7]. We use a
GeneticAlgorithm (GA) to evolvemapping expressions based upon a given grammar.
The evolved expression allows us to create a real time system rather than an offline
visual output. In this way, any particular performance is not limited to a strict musical
input thereby allowing improvisation, timing and phrasing variation, and handling
of human error.

Another advantage of this particular GA approach is the flexibility by which we
can incorporate aesthetic data. By using a grammar, we are decoupling the structure
of the output of the GA from the actual process of evolution. To extend the current
implementation to include intensity as an aesthetic attribute, for example, we simply
edit the grammar to accommodate this. We can also extend the grammar to include
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other operators, such as predefined functions if we feel their inclusion may improve
the performance of the system.

Further, the human readability of the output expression is extremely valuable,
not only as a sanity check to debug unexpected behaviour, but also to analyse the
output of a particular evolutionary run. The goal of this work is not simply to create
analogies, but to understand the process by which they are created. The readability
of output expressions at each stage of the evolutionary process is therefore a huge
advantage over other black box AI techniques which produce results without any
way of understanding how or why they were produced.

Mapping Expressions. Mapping expressions are created by using an individual
chromosome to guide the construction of a symbolic expression by use of the given
grammar. The following is an example of a symbolic expression representing a nested
list of operators (addition andmultiplication) and parameters (2, 8 and 5) using prefix
notation. This is the same structure used by mapping expressions.

(+ 2 (* 8 5))

The symbolic expression is evaluated from the inside out, by evaluating nested
expressions and replacing them with their result. In this example, the nested expres-
sion multiplying 8 by 5 will be evaluated producing the following intermediate
expression.

(+ 2 40)

Once all nested expressions are evaluated, the final expression can return a result,
in this case, 42.

Grammar. The grammar defines the structure of an expression using terminal and
non-terminal lexical operators. Terminals are literal symbols that may appear within
the expression, such as +, ∗ and the integers in the example expression above. Non-
terminals are symbols that can be replaced. Non-terminals often represent a class of
symbols such as operators of a specific cardinality, other non-terminals, or specific
terminals. In the example expression above, the+ and∗ symbolsmight be represented
by a single operator non-terminal that accepts two parameters. Parameters may be
an integer, or a sub expression. Finally, the integers in the expression above could be
replaced by an integer non-terminal. This leaves us with the simple grammar shown
in Table1 which is capable of representing not only the example expression, but also
any other expression, of any size, that adds and multiplies integers.

Given a defined grammar, such as the example grammar in Table 1, an expression
can be built from a chromosome using the following approach. Beginning with a
starting non-terminal, each value in the chromosome is used in series as the index
of the next legal terminal or non-terminal. This mapping continues until either the
expression requires no more arguments, or a size limit is reached. If the chromosome
is not long enough to complete the expression, we simply begin reading from the
start of the chromosome again.
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Table 1 Example grammar

Non-terminals Possible replacements

Parameter Integer, (Operator Parameter Parameter)

Operator +,∗
Integer Any integer

Terminals

+
∗
Any Integer

Evolution. The evolution process is straightforward thanks to the simple structure
of chromosomes. Each mapping expression becomes an individual within out popu-
lation possessing a single chromosome. Beginning with a population of individuals
with randomly generated chromosomes, known as Generation 0, successive genera-
tions are produced using Selection, Crossover and Mutation genetic operators.

Tournament selection wth elitism is used in this implementation. At generation
Gn , the fitness of each individual is calculated. A small number of the highest fitness
individuals are moved to generation Gn+1. This elitism is used to prevent the max-
imum fitness of the population from declining. The selection phase now begins to
population the rest of generation Gn+1. Two individuals are selected at random. The
individual with more favourable fitness is placed into generation Gn+1. The process
continues until the desired size of generation Gn+1 is reached.

When selection is complete, crossover begins using both single point and double
point crossover. Two individuals P1 and P2 are selection at random from the newly
selected generation Gn+1. If single point crossover is to be used, a random crossover
point is selected and two children, C1 and C2 are produced. These children take the
place of their parents in the new generation.

C1 will receive a chromosome made up of the P1 codons to the left of the
crossover point, and the P2 codons to the right of the crossover point. C2 will
receive the alternative, that is, a chromosome made up of the P1 codons to the right
of the crossover point, and the P2 codons to the left of the crossover point. If double
point crossover is to be used, the same steps are taken, but twice. This results in one
child receiving outer codons from one parent and inner codons from the other.

The effect of double point crossover is quite strong when using the described
implementation of Grammatical Evolution. Due to the tree-like, recursive way in
which an expression is built, single point crossover invariably has large effects on
the final expression. Large portions of the expression are likely to be completely
different, even to the parent expression, as previous codons determine themeaning of
following codons. Double point crossover alternatively, can operate similar to subtree
substitution, affecting only a small portion of the final expression and retaining the
overall structure of the expression tree.
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Finally, once generation Gn+1 is complete, a mutation operator is applied. Muta-
tion consists of setting a very small number of codons to newvalues. Both themutated
codon and the new value are randomly selected.

This process relies heavily on the fitness function. Calculating the fitness of any
mapping expression without some guidelines would be extremely subjective. In our
implementation we take a heuristic approach that rewards solutions that produce
outputs with a similar normalised aesthetic value as inputs. An in-depth description
of the implemented fitness function is presented in Sect. 4.1.

4 Implementation

We now discuss how the structure introduced above together with the data gathered
has been implemented. We demonstrate how the following system has been used
to evolve mapping expressions that generate a visual output when given a musical
input. The system may be used to generate visuals in time with music by use of a
time synchronized subsystem utilizing a music synthesizer and visualization server.

4.1 Evolution Phase

Figure4 shows the structure of the Evolution Phase. This phase is centred about
the GE algorithm. In our implementation we use a population of 50 chromosomes.
Chromosomes are stored as 8 bit integer arrays, with values between 0 and 255.A
chromosome length of 60 integer values was used in the work presented in this paper.

Musical input is taken in the form ofMusical Instrument Digital Interface (MIDI)
data. The MIDI protocol represents digital music signals, originally designed as a
transmission protocol to allow musical signals to be sent between instruments and
synthesizers. Musical notes are sent as packet pairs (note on and note off ) containing
the note pitch and the ‘velocity’, or strength of the note which is often translated to
volume. The MIDI protocol also allows data to be stored as a file with each packet

Fig. 4 Evolution Phase
overview. Extracted from
[26]
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Table 2 Grammar terminal
operators

Expression Arguments

Plus 90◦ 1

Plus 180◦ 1

Sin 1

Cos 1

Log 1

Addition 2

Subtraction 2

Multiplication 2

Division 2

Music harmony constant 2

Visual harmony constant 2

Ternary conditional operator 3

Table 3 Grammar terminal
values

Expression Range

Constant integer value 0–255

Musical input 1 0–255

Musical input 2 0–255

containing a timing value. We use a file to store a sample musical input using this
format and determine which notes are being played using the timing value.

The implemented grammar contains a list of operators, and values (variables and
constants) which are presented in Tables2 and 3. Of note here are the aesthetic
values for music and visuals which can be inserted directly into an expression as
constants, or read at run-time as variables in the case of musical input. The aesthetic
models use normalised values based on the values shown in Figs. 2 and 3. Aesthetic
constant expressions such asMusical Harmony Constant and Visual Harmony Con-
stant, accept two arguments representing two music notes or two colour hues. The
expression returns the aesthetic value of those two notes or colours.

Our fitness function, as introduced above, aims tomaximise the similarity between
input and output harmony. The fitness for any n pairs of input musical notes is
calculated as follows, where M is a function representing the musical harmony of a
pair of notes, and V is a function representing the visual harmony of a pair of colour
hues.

f i tness = 1

n

n∑

i=1

255 − |M(input) − V (output)| (1)

Both M and V are normalised between 0 and 255, which produces a fitness range of
0–255.
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Tournament selection is carried out to select individuals for evolution. A com-
bination of single point and double point crossover is used to build a succeeding
generation. Elitism is used to maintain the maximum fitness of the population by
promoting the best performing individuals to the next generation without crossover
or mutation.

Mutation is applied at the gene level. A gene is mutated by randomly resetting its
value. The mutation rate is the probability with which a gene will be mutated. The
mutation rate is varied based on the number of generations since a new peak fitness
has been reached. This allows us to optimise locally for a period, and introduce
hyper-mutation after an appropriate number of generations without any increase in
peak fitness. We call this theMutation Threshold. The standard mutation rate (Mut1)
is calculated as:

Mut1 =
(0.02

70
α
)

+ 0.01 (2)

where α represents the number of generations since a new peak fitness was reached.
After theMutationThreshold is reached, indicating a local optima, hyper-mutation

(Mut2) is introduced to encourage further exploration of the fitness landscape.

Mut2 = 1.0 (3)

If a fitter solution is discovered,mutation is again reduced toMut1 to allow smaller
variations to occur.

At each generation, the mapping expressions represented by chromosomes are
stored. This allows us to monitor the structure and size of the expressions as they
are created. We can also use the stored expressions to compare earlier generation to
later generations.

Evolution is halted after a Halting Threshold has been reached. The Halting
Threshold is measured as the number of generations without an increase of peak
fitness. Details of the parameters used can be found in Table4.

The output of this process is a set of mapping expressions representing the final
generation. From this set, the fittest expression is selected for evaluation and com-
parison to the fittest expression from previous generations.

Table 4 Genetic algorithm
parameters

Parameter Value

Population size 50

Chromosome length 60

Crossover rate 0.8

Standard mutation Rate
(Mut1)

see Eq. (2)

Hyper-Mutation rate (Mut2) 1.0

Mutation threshold 100

Halting threshold 200
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4.2 Evaluation Phase

In order to evaluate the performance of an evolvedmapping expression, wemust play
both music and visuals together. To this end, we have built the evaluation system as
outlined in Fig. 5.While the evolved expression is capable of generating visual output
in realtime, the evaluation for this work is conducted offline, using a pre-calculated
file containing the original musical data, and the generated visual data.

In order to performmusic in synchrony with generated visuals, an extended MIDI
player subsystem is required. Musical data (MIDI) and visual data are combined in
an extended MIDI file (MIDIX). The extended MIDI player then parses this file and
uses an internal time synchronisation process to send MIDI signals to two separate
systems: a music synthesizer and a visualization server. Both systems are capable of
reading MIDI signals and producing output in real time.

The music synthesizer is a common tool in music creation and performance.
Historically, synthesizers existed as hardware devices connected to some digital
instrument producing MIDI signals. The synthesizer would listen for input from a
physical MIDI cable, and produce a signal which could be sent to an amplifier and
speakers to create audio. Modern synthesizers are typically digital systems that listen
to digital MIDI ports for message packets and produce audio using modern audio
interfaces. While hardware based synthesizers are highly sought after by electronic
musicians, software based synthesizers are indistinguishable in most circumstances.

We make use of digital synthesizers in this work due to their flexibility and cost
effectiveness. We use a standard MIDI port to send and receive musical data to an
open source software synthesizer, part of the Reaper digital audio workstation [38].
The signals received by the synthesizer are used to produce realistic sounding music.

The visualization server is a software system created specifically for this imple-
mentation. The server works in a similar fashion to a music synthesizer; however,
rather than using a MIDI port, the server uses HTTP and websockets. With this
approach, a webserver accepts HTTP messages sent from the extended MIDI player
and useswebsockets to update a javascript application running in aweb browser. This
technology was chosen due to the cross platform support for javascript applications
and also due to the ease of rendering a visual display using standard web technolo-
gies. When the javascript application receives an update through the websocket, the
display is updated accordingly. This ensures the visuals remain synchronized with
the audio being played.

Fig. 5 Evaluation Phase
overview. Extracted from
[26]
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4.3 Supervised Fitness

Using the evaluation system outlined above, we can interactively evaluate the per-
formance of a particular mapping expression. We can either use a static MIDI file to
compare individual expressions or we can use a live MIDI instrument to send live
MIDI signals to evaluate how it performs with improvised and varying input.

Expressions that are deemed fit by human supervision may then be reintroduced
to the evolution phase to continue the process. This step is independent of the fitness
function in order to capture aesthetic results beyond its capabilities.

5 Results

5.1 Evolutionary Phase

Using the approach outlined above we successfully evolved mapping expressions
capable of mapping musical input to visual output.

Many of the random seed expressions such as the following example simply
produced constant values:

[’plus180’,[’plus90’,[’sin’, 215]]]

In later generations however, we see more complex expressions producing better
fitting results:

[’add’,56, [’musicalHarmony’,94,[’cos’,’mus2’]]]

Here we see the expression makes use of the input variable mus2 and the musi-
cal harmony constant musicalHarmony which produces a dynamic output. The
example chosen here is one of the smallest expressions created.

Further visual analysis of the smallest evolved expressions shows regular use of
dynamic input variables. A script was used to search through the entire set of final
expressions from all evolutionary runs. The smallest expressions were selected for
manual evaluation and visual inspection. The sampled expressions achieved high
fitness scores, above 200 in all cases, while using less than 10 sub-expressions. Leaf
nodes of these sampled expression trees consist of at least one input variable in all
cases. All sampled expressions alsomade use of musical or visual harmony constants
at least once.

Figure6 shows the distribution of fitness values for randomly generated expres-
sions versus evolved expressions. We see the distribution for random expressions is
heavily skewed towards the minimum value of 100. This is due to the number of
expressions which produce a constant output. Evolved expressions however show a
much tighter distribution with significantly higher fitness values.

The distribution of intervals in the input M will affect the fitness of the evolved
expression. An evolved expression may be directly compared to the target visual
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Fig. 6 Fitness of 100
randomly generated
Mapping Expressions versus
Evolved expressions.
Extracted from [26]
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harmony by using an equally distributed input. Our input is a set of 11 note intervals,
1–11, excluding the unison and octave intervals 0 and 12 respectively. In Fig. 7we see
a demonstration of this comparison. Previous generations are shown as dotted lines
with the final fittest individual in solid black. The target output, the output that would
produce an optimumfitness value, is shown in red.We see as the generations pass, the
output matches the target more closely. Of note here are the horizontal dotted lines
indicating older generations producing constant outputs which have been superseded
by generations producing closer matching dynamic outputs.

Figure8 shows the fitness of a single population across a number of generations.
In blue we see the maximum fitness of each generation. This value never decreases

Fig. 7 Output of one
evolved expression and its
ancestors compared to target
visual harmony. Extracted
from [26]
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Fig. 8 Population fitness for
631 generations of a typical
run. Extracted from [26]
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due to the use of elitism. Highly fit individuals are brought from one generation to
the next to prevent the population from decaying and losing a possible fit solution.

In red we see the average fitness of the population. During early generations we
see dramatic improvements in fitness followed by a series of incremental increases
punctuated by dramatic decreases in average fitness. These incremental increases in
fitness are an indication of local optima being discovered with low mutation. Hyper-
mutation is then introduced causing the dramatic reduction in average fitness as
more individuals mutate in more extreme ways. While this seems to have a negative
effect on the population as a whole, it allows us to find fitter solutions and prevents
premature population convergence at a local optima.

5.2 Evaluation Phase

Preliminary results have been obtained based on the initial implementation described
in Sect. 4.2. These results demonstrate that a visual display, however rudimentary, can
be produced based on musical data in real time. The extended MIDI player was used
to play a file containing a 10smusic piece withmusical intervals of varying harmony.
Visuals generated by a mapping expression were displayed on a computer screen.
Visuals were observed to be in time with the synthesized music. An example of the
visual display with screenshots taken at 2 s intervals are shown in Fig. 9. The colour
pattern used in the visual display was similar to that used to collect colour harmony
data. This ensures that there is no variation between observed colour harmony and
generated colour harmony.

Our initial observations indicate the the evolved expressions produce an analogy
that results in more enjoyable visuals than randomly generated colours. The colours
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Fig. 9 Generated visual
display. Extracted from [26]

tend to follow a general pattern where similar note pairs, with similar intervals,
produce similar colours.

6 Discussion

In this work we aim to lay the foundation for further developments in the use of aes-
thetic analogy and supervised learning in art. Our work takes a pragmatic approach,
with the objective of using these tools to create an output which can be built upon
and extended in further studies.

In this regard, the results presented above show a positive outcome. We were
successful in defining an analogical structure which was codified such that Gram-
matical Evolution could be utilised to produce an output that represents an analogy.
That analog—or its representation—can then be used to create a visual output where
before there was only sound—or the digital representation of sound.

Realistically, of course, the visual output of the system is lacking in a number of
ways. It might be a stretch to call the display shown in Fig. 9 a piece of art, but it
is undeniably a visual display which has been created by a computer system. This
system knows only the given parameters of aesthetics, a grammar and a way to
compare results in the form of a fitness function. In this respect, the results might be
compared to the exploratory play of a toddler as she learns. While the results might
not be on par with more advanced or mature systems, what we are shown is really
the beginning of what might be possible.

6.1 Analogical Structure

Oneof the clear drawbacks of thework presented here is the restriction in the structure
of the analogy used. Currently, the system is designed to create an analogy using only



62 A. Breen and C. O’Riordan

one aesthetic attribute—harmony. This attribute was chosen specifically because it
was clearly present and easily measured in both domains.

Harmony is however, only one of many potential attributes within the context
of the aesthetics of music and visuals. The resulting analogy could therefore be
described as a fractional aesthetic analogy, or an analogy of harmony alone which
may contribute to the overall aesthetic quality. We hope to achieve a full analogy of
aesthetics by making use of more than one attribute. To this end, we have highlighted
a number of potential candidates for future attributes to be included.

Symmetry, intensity, contrast and complexity have specifically been highlighted
as candidates for our future work. All four attributes can be observed in each domain
and we believe they all may be measured, to some degree, without a great deal of
subjectiveness or computational expense. Contrast is perhaps the easiest attribute to
measure in both domains with contrast in visuals being measurable on a per-pixel
basis and in music on a per-note basis. Symmetry is similarly directly measurable
in visuals, and potentially measurable in music using heuristics such as matching
beat patterns or relative pitch changes. Intensity in visuals may be measured as a
function of colour contrast and fractal index while in music it may be measured by
volume and tempo. Finally, complexity is commonly measured in visuals using a
fractal index and may be measured in music simply by measuring the number of
notes being played in a period of time.

These attributes may not represent the full aesthetic gamut but we believe that
they will provide a strong toolset, beyond harmony alone.

6.2 Evaluation

The evaluation phase, as described above, refers to the evaluation of the output
visual display in tandem with the input music. We report a positive preliminary
result however, fully evaluating the output of the system in any reasonably objective
way would require a great deal of work beyond the scope of this paper.

A study of human subjects would be required to compare randomly generated
visual displays, to displays created withmapping expressions of various fitness. Due
to the subjective nature of human aesthetic response, a reasonably large study would
be required. A similar problem was faced when gathering the data used to build the
aesthetic models used in this work. Even when tasked with ranking simple musical
note pairs—or colour pairs—the participants in the study suffered from fatigue and
boredom extremely quickly which may have had strong effects on the data gathered.

In the case of musical note pairs, however, the study could be conducted at a
reasonably quick speed as each note pair would play for only a few seconds. To
evaluate the output of the system presented in this paper, a longer segment of music
must be played, significantly increasing the time it takes to gather information from
any individual subject. This has a knock-on effect of increasing fatigue and boredom,
reducing the quality of the data gathered. It is possible that any data gathered in a
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study like this would simply by too strongly affected by subject fatigue and boredom
to be useful in any meaningful way.

In practice however, no visual display is created in this manner. A display for a
live music performance would typically be created at the discretion of the lighting
designer or artist, and a small number of advisors with very little specific feedback
from the audience. This observation should serve to guide the development of the
system as an artistic tool, rather than a replacement of the artist.

6.3 Future Work

We have shown that mapping expressions can be evolved using a fitness function
based on empirically developed aesthetic models. However, we have not evaluated
the perceived aesthetic differences between expressions of varying fitness. Further
research is required to fully evaluate the strength of this correlation.

At present we restrict the number of input musical notes to simplify the grammar
and allow analysis of the evolved expressions. This clearly limits the application
of this system greatly. Future iterations should accommodate varying musical input
lengths.

The results presented were obtained using only one mapping expression between
musical consonance and colour harmony. We have not explored the possibilities of
using multiple mapping expressions incorporating many attributes. We believe this
will improve the quality of generated visuals dramatically.

As shown in Sect. 5, the fitness of a population has certain limitations. We hope to
improve the speed at which fitness increases and also increase the maximum fitness
achievable by any individual by tuning the parameters of the genetic operators.

The extended MIDI format has a number of useful applications beyond its use in
this implementation. The format may also be useful for predefined visual displays
and synchronised performances. With this in mind, we would like to fully define our
version of the protocol and make it available to the public.

In a similar vein, the visualization server, which uses the extended MIDI format
may also be improved. Most immediately, it should be able to handle all of the
attributes used by mapping expressions to generate varied and immersing visual
displays. Also, the server is currently restricted to displaying visual displays on a
computer screen, which is not suitable for a live performance. We hope to develop
functionality to allow the visualization server to accept an extended MIDI signal and
control stage lighting hardware using industry standard protocols.
The outlined system is certainly capable of producing some visual output. Whether
that output is deemed aesthetically pleasing is still an open question. In order to
determine the actual performance of the final output of the system, we hope to
conduct a study with human subjects. Our hypothesis here is: the system produces
more pleasing visual displays than random colour changes.
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The proposed study would demonstrate if we are moving in the right direction,
however, the overall goal of this research is to create a system that can create art,
and perform it. To this end, the success of the system should be evaluated with a live
performance.

7 Conclusion

The reported results show the effectiveness of the analogical structure as shown in
Fig. 1, which can be used in combination with Grammatical Evolution to produce
novel visual displays. This analogical structure successfully guides the collection
of data in each aesthetic domain. This structure also allows the creation of a fitness
functionwhich serves to allow the generation of effectivemapping expressionswhich
maximise the aesthetic similarity between input music and output visuals over the
course of an evolutionary run. The use of mapping expressions, evolved using this
fitness function, allows the creation of real-time aesthetic analogies based solely on
human aesthetic experience, without assuming any structure or weighting between
aesthetic values across domains.

Results show mapping expressions that have achieved similarity in harmony
between input music and output visuals using this approach. We also show the
increase in fitness over time across an evolutionary run, demonstrating the effec-
tiveness of Grammatical Evolution in this application.
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