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Abstract—This work involves agent-based simulation of boot-
strap percolation on hyperbolic networks. Our goal is to identify
influential nodes in a network which might inhibit the percolation
process. Our motivation, given a small scale random seeding of an
activity in a network, is to identify the most influential nodes in a
network to inhibit the spread of an activity amongst the general
population of agents. This might model obstructing the spread
of fake news in an on line social network, or cascades of panic
selling in a network of mutual funds, based on rumour propa-
gation. Hyperbolic networks typically display power law degree
distribution, high clustering and skewed centrality distributions.
We introduce a form of immunity into the networks, targeting
nodes of high centrality and low clustering to be immune to
the percolation process, then comparing outcomes with standard
bootstrap percolation and with random selection of immune
nodes. We generally observe that targeting nodes of high degree
has a delaying effect on percolation but, for our chosen graph
centralisation measures, a high degree of skew in the distribution
of local node centrality values bears some correlation with an
increased inhibitory impact on percolation.

Index Terms—Hyperbolic Random Geometric Graphs; Boot-
strap Percolation; Inhibitor Nodes; Influential Nodes

I. INTRODUCTION

In real world complex networks, there is a lot of interest in
determining influential nodes in networks, for example iden-
tifying social media influencers to broaden the reach of brand
messaging. This work involves identifying nodes in a network
which are influential in obstructing the spread of an activity
in bootstrap percolation on hyperbolic networks. Measures
of network influence are often based on centrality measures
such as degree, betweenness and closeness centrality. Degree
centrality is frequently chosen, as this value is determined
by the number of links incident to a node, and high degree
represents a node with many contacts. High betweenness cen-
trality represents nodes which may have a “brokerage” role in
a network. High closeness centrality represents nodes that are
closely linked to important nodes while not necessarily having
high degree or betweenness. Our approach is aiming for an a
priori intelligent selection of influence by investigating any
correlation between graph properties that are highly skewed
in the hyperbolic graphs such as high closeness, and high
clustering. Our intuition is that properties with highly skewed
distributions will maximise the inhibitory effect.

In bootstrap percolation, people are often interested in
determining which nodes to choose, or how many, to maximise
the spread of an activity, for example who to target in viral
marketing to optimise the spread. Our own focus is on inhibit-
ing this spread, and observing which nodes are most influential
in obstructing the activity; there has been little empirical in-
vestigation of this nature on hyperbolic networks, which share
many features with real world complex networks. This might
model the spread of fake news in a social network, where
we wish to identify “responsible” nodes, which will take care
not to share disreputable information, or perhaps a network of
mutual funds, where there is panic selling based on rumour,
certain influential nodes could be targeted to hold firm against
the spread of fake information. This work is related to the
study of immunisation strategies in epidemiology, and other
inhibitory actions in networks, such as preventing the spread
of malware in computer networks. While all are interested in
identifying the best nodes to inhibit the spread of an activity,
there are different underlying assumptions. In epidemiology
and the study of computer viruses, the specific infection must
be identified in order to introduce immunity by applying
a vaccine or anti-viral software. In bootstrap percolation,
modelling social influence in spreading activities, the message/
activity may never previously have been encountered; in our
work, the inhibitor node receives the message, but resists peer
pressure, and takes no part in spreading the activity.

Our work complements existing theoretical work on iden-
tifying influential nodes in networks and outlines further
avenues in an empirical manner. Our proposed method for
identifying these nodes involves agent based modelling of
bootstrap percolation on hyperbolic random geometric graphs,
to observe how the underlying spatial configuration of a
network will impact upon the process. We have created a set of
hyperbolic graphs of varying edge density, from unconnected
to fully connected, and noted that as we increase the number
of edges we can observe a distinct threshold for edge density
above which the activity spreads and below which the activity
fails to percolate. Our particular interest is on the set of graphs
at the percolation threshold, to identify certain properties of
these graphs that facilitate or impede percolation.

Section II provides related information about bootstrap
percolation and hyperbolic graphs. Section III introduces ourIEEE/ACM ASONAM 2018, August 28-31, 2018, Barcelona, Spain
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approach for identifying influential nodes to inhibit bootstrap
percolation on hyperbolic networks. Section IV describes our
experimental set-up and our results are presented in section
V. Our conclusions are discussed in Section VI, together with
suggestions for future work.

II. BACKGROUND

A. Bootstrap Percolation

Bootstrap percolation describes the process where an activ-
ity spreads to individuals in a population when the number of
their active contacts is at least a specified activation threshold.
This concept was introduced in research studying the mecha-
nism of ferro-magnetism [1].

This process can be applied as a model for social reinforce-
ment, under the assumption that individuals are considered
more likely to adopt a new activity that is popular with their
contacts, and has been used to model a diverse variety of
topics, such as the diffusion of information [2], [3], viral mar-
keting [4], spreading behaviours [5], as observed in opinion
formation, voter trends, the adoption of products, technology
and social networking innovation [6]–[8], and in cascading
power system failures.

In standard bootstrap percolation, an agent is in either
active or inactive state. From an initial population of inactive
agents, a set of active nodes is selected either at random
or deterministically. An activation threshold is selected, and
at each time step the activity spreads when the threshold
of active contacts is exceeded. The activation mechanism
occurs simultaneously at each time step for all agents in
the population. The process repeats until either no further
nodes can be activated, or until predefined criteria are met,
for example the number of time steps. In the spatial form of
the process, where agents are attached to nodes in a network,
activation occurs where the number of active nodes directly
connected to an inactive node exceeds the activation threshold.
Bootstrap percolation has been studied on a number of random
graphs and complex networks [9]–[14].

A key consideration in the field is whether or not an activity
will spread completely across a network. Much of the research
involved focuses on the relative state of the initial active seed
set, and the emergent state of the population. This typically
requires analysing which nodes are selected [15] for the initial
seed set, or how many are required [16], to facilitate the
spread of the activity. Kempe et al. [17] analysed algorithms
to optimise the selection of influential nodes on a variety of
networks, noting that this was NP-hard.

Candellero et al. [18] researched bootstrap percolation on
hyperbolic random geometric graphs by analysing node posi-
tion within the hyperbolic disc, whereby inductive reasoning
was used to determine the size of the initial seed set for which
the activity would percolate completely, fail to percolate, or
spread to a positive amount with high probability.

B. Immunisation and Influential Nodes

In this context, the notion of immunity comes from epi-
demiology and the spread of diseases. In 2002 Pastor-Satorras

and Vespignani introduced immunised nodes into a simple
SIS (Susceptible - Infected - Susceptible) model of scale free
networks such as the sexual partnership web and the Internet
[19]. They noted that uniform random immunity had little
effect, due to the inhomogeneity of node degree, and suggested
that successful immunisation strategies should target immunity
based on node degree ranking.

The topological differences in complex networks has meant
that over the years a variety of measures have been used to
identify influential nodes in networks. In a recent comparative
review of progress in this area, Lu et al. clarified concepts
and commonly used measures of influence, noting that several
studies have found different measures to be influential based
on whether the goal was to facilitate or obstruct the progress
of the activity [20].

Recent work has looked at hybrid strategies, taking into
account network structure and node activity [21]–[23]. Ghan-
bari et al have looked at correlation of centrality measures in
cascade failures noting that, in their networks, removing nodes
of high degree had less severe impact than removing nodes of
lower degree [24].

Our own focus is based on a long term goal of being able
to make an intelligent selection of influential nodes based
on global network properties. With this in mind, we select
hyperbolic random geometric graphs as our network model,
as they display distinctive patterns of centrality measures as
the number of edges in the graphs increases, which aids in
mapping the relationship between the chosen node property
and the inhibitory effect.

C. Hyperbolic Random Geometric Graphs

A random geometric graph is constructed by random selec-
tion of a number of points in some space of interest and then
connecting those that lie within a specified distance of each
other. They were developed to model real world applications,
such as the likely spread of a forest fire given the distance
between trees.

Random geometric graphs are typically created on the
Euclidean plane, in particular the unit square and the unit disc.
These graphs may be used to model wireless ad-hoc and sensor
networks, in which node proximity defines network connec-
tions. Other applications for this model include percolation
theory [18], diffusion within a network and conductivity [25].

Hyperbolic random geometric graphs were investigated by
Krioukov et al in [26]. In this model, points are distributed
within a hyperbolic disc of interest and pairs of nodes are
connected if the hyperbolic distance between them is less than
a specified distance parameter.

To demonstrate the difference between Euclidean and Hy-
perbolic random graphs, the negative curvature of the hyper-
bolic plane can be transformed to a 2 dimensional disc using
the Poincaré disc model of the hyperbolic plane. The hyper-
bolic model effectively has more capacity than the Euclidean
disc, with the circumference increasing exponentially as the
radius grows larger. Points are not uniformly distributed within
the hyperbolic disc, points in the centre appear closer to us,
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with outer points exponentially distant towards infinity at the
boundary. This has the effect of creating graphs with lots of
central hub nodes and leaf nodes towards the boundary.

Typically hyperbolic models are highly clustered [27], with
power law degree distribution and short path lengths, attributes
commonly seen in real world complex networks. Recent work
suggests that the Internet graph conforms to an underlying
hyperbolic geometry [26]. Figure 1 shows a snapshot of inter-
net connectivity, produced by CAIDA, with selected Internet
Service Providers coloured separately, illustrating the tree- like
and highly clustered structure of the internet graph.

Fig. 1: The Topology of the Internet. Source: [28]

III. FRAMEWORK FOR IDENTIFYING INFLUENTIAL NODES
TO INHIBIT BOOTSTRAP PERCOLATION ON HYPERBOLIC

NETWORKS

In standard bootstrap percolation, the only possible state
change is from inactive to active; no reverse state change is
permissible. In a percolating network, our goal is to target the
most influential nodes in obstructing the percolation process.
Our motivation, given a small scale random attack in a net-
work, is to select a small number of nodes to immunise against
the activity, which would obstruct the percolation process and
effectively grant a form of herd immunity.

Fig. 2: Conceptual Framework for Identifying Influential
Nodes to Inhibit Bootstrap Percolation on Hyperbolic Net-
workd

In our previous research [29], we found that as the num-
ber of edges in a set of hyperbolic graphs increased there

was a distinct transition threshold above which the activity
completely percolated on all the graphs and below which the
activity failed to percolate on these graphs, illustrated in Figure
3. If a percentage of nodes was allowed to recover at each time
step, this had a delaying effect on the percolation process
and this effect was enhanced when nodes of high degree
were selectively targeted to recover, compared with random
selection of nodes.

Fig. 3: Heat Map for Ao = 20, with AT from 2 to 10, and R =
0.1 to 12, showing number of final active nodes at equilibrium

Our current focus is on selecting the most influential nodes
in a network to obstruct the percolation process. Instead of a
percentage of active nodes recovering at each time step, the
targeted nodes would always recover, effectively immunising
them against the spread of the activity. In particular, we are
interested in targeting graph properties that are highly skewed
in the hyperbolic graphs such as high closeness, and high
clustering. Nodes are selected a priori, based on the specified
properties. Our intuition is that properties with highly skewed
distributions will maximise the inhibitory effect. As a control,
the simulations are repeated, selecting the same number of
nodes at random to immunise in each simulation.

We theorise that it may be possible to determine, from graph
properties, which set of nodes might have the most influence
when effectively immunised against the bootstrap percolation
process.

IV. EXPERIMENTAL SET UP

Our experimental design involves creating a set of hyper-
bolic graphs, simulating agent based modelling of bootstrap
percolation on all graphs in this set, then simulating bootstrap
percolation with immunity on selected graphs. Using the same
set of graphs allows direct comparison across the different sets
of simulations, and keeping the number of nodes fixed allows
us to reduce complexity and present clearer results. All of our
graphs have 1000 nodes as this is sufficiently large to analyse
complex contagion, yet small enough to be computationally
tractable. This synthetic graph model has been chosen as it
is easier to create and control the parameters than in real
world networks. This particular model has been chosen as it
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shares many features with real world complex networks, such
as high clustering, short path lengths and power law degree
distribution.

A. Creation of hyperbolic random geometric graphs

A set of hyperbolic random geometric graphs is created
using the method outlined in Krioukov et al. [30]. This
involves taking a disc of radius R, distributing points with
a hyperbolically uniform node density and connecting points
if the hyperbolic distance between them is less than R, with
R varying from 0 to 12 in increments of 0.1.

Algorithm 1 Create Hyperbolic Geometric Graph G(n,R) in
a disc of hyperbolic radius R in H2

Input: Number of vertices n, distance parameter R =
2log(n) + c
Output: Adjacency matrix: A[i, j]
For each vertex vi ∈ V [G]
for i← 1 to n do

Generate hyperbolically distributed independent polar co-
ordinates:
r ∈ [0, R], θ ∈ [0, 2π]
For each pair of vertices vi, vj ∈ V [G]
for i← 1 to n do

for j ← 1 to n− 1 do
Calculate hyperbolic distance d[vi − vj ] 1, 2

if d < R then
A[i, j]← 1

else
A[i, j]← 0

For ease of comparison, all graphs are created with 1000
nodes, and 20 graphs are created at each distance parameter R,
resulting in the creation of a set of 2,400 hyperbolic random
geometric graphs with increasing edge density from 0 to 1.

B. Simulation of Bootstrap Percolation

For each graph, a population of agents is attached to each
graph, one to each node. All agents are initially inactive,
and 20 agents are chosen at random to form the active
seed set Ao, representing a small scale random attack in a
network. The initial activation threshold is set at 2 and, at
each time step, inactive nodes with at least this number of
active neighbours are activated. This mechanism is repeated
for each time step until an equilibrium is reached, where no
further state change is possible. The simulations are repeated
on this graph increasing the activation threshold up to 10, in
increments of 1. This is repeated for 1000 simulations at each
activation threshold parameter, each with a different randomly
selected seed set Ao. The final number of active nodes at
equilibrium is recorded, and the outcome for each simulation
is grouped in sets of one hundred, from 0 - 100 up to 901 -

1Since d[vi − vj ] = d[vj − vi], then A[i, j] = A[j, i]
2Calculate hyperbolic distance d[vi − vj ] using: Cosh(d) =

cosh(ri)cosh(rj)− sinh(ri)sinh(rj)cos(θi − θj)

1000; the number of simulations containing outcomes within
each grouping is recorded.

In the previous heat map, Figure 3, it can be seen that for
most graphs in the set, the activity either percolates completely
or fails to percolate, we are particularly interested in the set
of graphs at the percolation threshold. It is here that allowing
for immunity is likely to have greater impact. For this reason
we have chosen particular sets of graphs at the threshold to
repeat our bootstrap percolation simulations, allowing for the
introduction of immunised nodes in these graphs.

Our simulations for comparison of bootstrap percolation
with bootstrap with immunity are therefore performed on 20
hyperbolic random geometric graphs created at each of two
distance parameters R, specifically those at both edges of the
upper boundary of the percolation threshold shown in figure
3. At the rightmost edge, R = 5.7, all simulations on this set
of graphs completely percolated for all activation thresholds
from 2 to 10. At the left edge, graphs created at distance
parameter R = 3.0 were the first set which displayed complete
percolation at activation threshold 2. These represent edge
densities of approximately 0.1 and 0.02 respectively.

C. Simulation of Bootstrap Percolation with Immunisation

This set of experiments has the same design as the standard
bootstrap percolation set up, however an immunised seed set
Io is selected beforehand to be immune to the percolation
process, neither active nor inactive, and remaining immune
throughout the simulation. Our initial experiments involved an
immunised seed set of 20 immune nodes, the same size as the
active seed set Ao. With 20 immune nodes we noted that the
rate of decline in percolating simulations appeared linear, so
we increased Io to 25, and noted that it levelled off for values
over 20 (see Figure 5). Therefore we chose Io of 25 nodes as
this gave a more complete picture of the decline in percolating
simulations as the number of immune nodes increased.

1) Selection of Immune Nodes: Selection of Io is performed
in two ways, by targeted selection based on various node
properties, and by random selection for comparison.

• Random selection
• Targeted selection

– Degree centrality
– Betweenness centrality
– Closeness centrality
– Watts Strogatz Clustering coefficient

Of the many options for centrality measures, we have cho-
sen degree, betweenness and closeness as these have distinct
and varying levels of skewed distribution in the hyperbolic
graphs. This facilitates tracking the influence of each property
to determine if there is any correlation between the level of
skew of the centrality measure and the potential inhibitory
effect of selecting nodes highly ranked for this property.

Degree centrality is the number of links incident to a node,
with high degree representing a node with many contacts.
Betweenness centrality measures the number of times a node
appears on the shortest path between all pairs of nodes in the
network, where high betweenness represents nodes which may
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have a “brokerage” role in a network. Closeness centrality is
measured by the average length of the shortest path between
the node and all other nodes in the graph, with high closeness
representing nodes that are closely linked to important nodes
while not necessarily having high degree or betweenness. Our
selected clustering coefficient is the Watts Strogatz clustering
coefficient, also known as the network average clustering coef-
ficient. For an undirected graph the local clustering coefficient
of a node is:

ci =
ei

ki(ki−1)
2

where (ei) is the number of connections in the neighbourhood
of a node and ki(ki−1)

2 is the maximum number of connections
in the neighbourhood of a node of degree k. The Watts Strogatz
clustering coefficient is the average of the local clustering
coefficients (ci) over all nodes (n):

C̄ =
1

n

n∑
i=1

ci

All nodes in the graph are a priori ranked for the chosen
property and the top 25 highest ranked nodes are selected for
immunity. These nodes remain immunised and cannot change
state. The experiments are repeated for 1000 simulations at
each activation threshold from 2 up to 10.

V. RESULTS

A. Upper boundary of percolation threshold for activation
threshold of 10

The outcomes for all graphs at this parameter were similar.
To clearly illustrate these outcomes we have charted the results
from one particular graph randomly chosen at this parameter,
R = 5.713. On this graph, we compare standard bootstrap
percolation outcomes with outcomes from random selection
of immunised nodes and then with targeted selection of im-
munised nodes. During a priori node selection for immunity, it
was noted that the nodes of highest degree were also the same
set of nodes top ranked for high closeness, high betweenness
and low clustering. The results for high degree immunity
therefore represent outcomes for these other node properties.

Figure 4 represents outcomes for 1000 simulations of boot-
strap percolation at each activation threshold on one repre-
sentative graph at the upper edge of the percolation threshold
for activation threshold 10, the only thing varying in each
simulation is the random selection of 20 active seeds in Ao.
Each grouping along the x-axis represents the number of
final active nodes at equilibrium. The height of each column
represents the number of simulations that had outcomes within
that grouping.

In the standard bootstrap percolation simulations, see fig-
ure 4a, all simulations completely percolated, confirming the
initial results shown in the previous heat map.

Figure 4b represents outcomes for randomly selected im-
mune nodes showing that random immunity had no impact on
delaying percolation, with all simulations completely perco-
lating.

(a) No Immunity

(b) Random immunity

(c) Immunised for High Degree

Fig. 4: Graph 5.713. Comparison of outcomes for Immunity,
with 1000 simulations at each activation threshold

Figure 4c shows outcomes for 1000 simulations with the top
ranked 25 nodes of highest degree selected for immunisation.
There was no impact on percolation for activation thresholds
from 2 to 5, all simulations completely percolated, as before.
However, it is clear that targeted selection of hub nodes has
a significant impact on the percolation process for activation
thresholds 6 to 10. In standard bootstrap percolation, all
simulations at activation threshold 10 completely percolated.
With targeted immunity, approximately 90% of the simulations
now failed to percolate. This suggests that these 25 nodes
selected for immunity are highly influential in the percolation
process.

To assess if any particular node in Io had a marked contri-
bution to the delaying effect of immunity, we analysed the rate
of percolation as the number of immunised nodes increased
from 1 to 25 and found that no node had any outstanding
contribution to the delaying effect on percolating simulations,
see Figure 5. As the number of immunised nodes increased, the
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effect was cumulative with the rate of decline in percolating
simulations following a logistic curve.

Fig. 5: Rate of decline in percolating simulations as number
of immunised nodes increases from 0 to 25

B. Upper boundary of percolation threshold for activation
threshold 2

All graphs at this edge density parameter had similar
outcomes. For clarity, results from one representative graph
at R = 3.013 are displayed in Figure 6.

Additionally, results for activation thresholds of 7 to 10
are not included as all simulations at these parameters failed
to percolate in standard bootstrap percolation, and immunity
therefore could not have affected outcomes.

The results for simulations with Targeted Immunity on
graphs at R = 3.0 are more varied than for graphs at R = 5.7.
As before, random immunity had no impact when compared to
outcomes from the standard bootstrap percolation process, see
Figure 6b. However, when we selected the top ranked nodes
for different graph properties for immunity, we had varying
outcomes, see Figures 6c - 6f. In these plots, the greatest
decline in percolation is most clearly seen by observing activa-
tion threshold 4. The delaying effect can be ranked as follows,
with random immunity having no effect, when compared with
standard bootstrap percolation; the greatest delaying effect was
seen with nodes immunised for high closeness.

The rate of decline in percolating simulations is linear, with
no immunised node having any particular contribution over
any other immunised node.

• Ranked effect of node properties on delaying percolation,
from highest to lowest:

– High Closeness
– Low Clustering (Local node clustering coefficient)
– High Betweenness
– High Degree
– Random Immunity
– Standard Bootstrap

This is an interesting result, as hub nodes are commonly
seen as the standard influential nodes in a network. This

(a) No Immunity

(b) Random Immunity

(c) High Degree Immunity

(d) High Betweenness Immunity

(e) Low Clustering Immunity

(f) High Closeness Immunity

Fig. 6: Graph 3.013. Comparison of outcomes for Immunity,
with 1000 simulations at each activation threshold
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prompted an analysis of global graph properties at the upper
boundary of the percolation threshold.

C. Graph properties at the upper boundary of the percolation
threshold, for activation thresholds of 2 and 10

Analysis of the representative graphs at the upper boundary
of the percolation threshold are presented in Table I, the global
graph properties for each were similar to the other graphs at
their respective edge densities. Figure 7 shows our selected
graph centralisation measures as the number of edges increases
in the set of graphs, with selected threshold graph parameters
marked as blue lines.

TABLE I: Global graph properties at the upper boundary of
the percolation threshold

Graph Properties Graph 3.013 Graph 5.713

Density 0.019416 0.098962
Average Degree 19.416 98.962
Diameter 7 3
Watts Strogatz Clustering 0.7306781 0.78016659
Transitivity 0.55326337 0.4753645
Degree Centralisation 0.03970303 0.63995659
Closeness Centralisation 0.33503071 0.60320727
Betweenness Centralisation 0.21560217 0.12449812

It is interesting to note that the network average clustering
coefficient is very highly skewed in both graphs, which might
suggest that nodes with high local node clustering would be
influential in the percolation process. However, our results
show that it is nodes of low local clustering values that
have more impact than high clustering. This effect could, in
part, be due to the nature of the hyperbolic graphs, which
typically display central hub nodes (high degree) with leaf
nodes towards the boundary. These hub nodes generally have
low local node clustering values. The disparity of the number
of edges in the hubs, compared with other nodes, means that
transitivity, i.e. closing a triple, is less likely to occur. In fact
the hyperbolic graphs display a marked difference in the values
for the network average clustering coefficient and transitivity,
with the latter significantly lower than the former.

Fig. 7: Hyperbolic Graph Centralisation

D. Discussion

In graphs at the upper boundary of the percolation threshold
for activation threshold 10 (R = 5.7), all simulations had
previously percolated at all activation threshold values in
standard bootstrap percolation. After targeting 25 nodes of
high degree for immunity, this had a significant impact on
delaying percolation, with 90% of simulations now failing
to percolate at activation threshold 10. This set of 25 nodes
also had the highest values for betweenness and closeness
centrality, and for low clustering. These targeted measures
matched our expectations based on global graph properties.
However, for graphs at the upper boundary of the percolation
threshold for activation threshold 2 (R = 3.0), the results were
more ambiguous.

In graphs at R = 3.0, the impact on percolation was more
varied, with nodes of high closeness having most impact, fol-
lowed by high degree, low clustering, and high betweenness.
This does not match our expectations based on the degree
of skew seen in the graph properties. The greatest skew was
seen in clustering coefficients, followed by closeness and then
betweenness, with the lowest skew for degree centralisation.
However, when we restrict our analysis to the chosen central-
ity measures, there was a good correlation between skewed
centralisation and the impact on delayed percolation. Our
work confirms previous research on networks that hub nodes
are influential in spreading activities on networks, but also
highlights the greater importance of other centrality measures
on hyperbolic networks of varying edge density. It may be
that some other measure, or a combination of properties, is at
the heart of the influence and that it might be possible to fine
tune influential node selection by observing a variety of graph
properties.

VI. CONCLUSION

This work has demonstrated that identifying influential
nodes and targeting them for immunity has an inhibitory effect
on the bootstrap percolation process on hyperbolic networks,
when compared with random immunity.

This indicates that in these graphs certain nodes are highly
influential in the network and warrant being protected. Given
a small scale attack in a network, with 20 active seeds, our
results suggest that under these conditions it is possible to im-
munise influential nodes and effectively grant herd immunity
to the whole network. In the case of the graphs at activation
threshold 10, by targeting 25 nodes with high centrality
measures, we have reduced the likelihood of percolation from
1 to 0.1. On graphs at edge density 0.2, the probability of
percolation for activation threshold 4 has decreased from 0.4 to
0.02, for activation threshold 3, the probability of percolation
has decreased from 0.97 to 0.86. On this set of graphs, the
rate of decline was linear, which suggests that increasing the
number of immunised nodes would increase the obstructive
effect on percolation.

Results from our simulations have demonstrated that tar-
geting immunity at the top ranked nodes for high degree,
closeness and betweenness centrality and for low local node
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clustering coefficients has a delaying impact on the dynamics
of the bootstrap percolation process on the set of hyperbolic
graphs, when compared with random immunity which had no
effect on the bootstrap process. This impact varies with the
choice of node property selected. Node degree is commonly
seen as an important indicator of influence in a network
and our results confirm this, however in our graphs at the
percolation threshold for activation threshold 2, closeness
centralisation has the most effect in impeding the spread of
the activity. In terms of global graph properties, the selected
centrality measures had a good correlation with the degree of
skew on their respective graph centralisation measures, with
the top ranked nodes of highest skew relating to a greater
impact on delaying percolation.

1) Future work: An interesting avenue of follow-up re-
search is to replicate our work on all of the hyperbolic graphs
within the percolation threshold zone, with a view to mapping
the relationship with edge density, the changing pattern of
graph centralisation measures and outcomes in the percolation
process. The threshold graphs are chosen as it is here that
any potential delaying impact can be readily observed. We are
interested in those simulations which had a marked change
in our immunity experiments, to examine the relationship
between the active seed set and the immunised nodes. In
our simulations at the percolation threshold for activation
threshold 10, R = 5.7, only 10% of simulations completely
percolated after the introduction of immunity. By investigating
the spatial configuration of the paths between these sets of
nodes, and the local neighbourhood structure, it might be
possible to determine which local neighbourhood features have
the greatest impact on global dynamics in the network.

We plan to use a greater variety of global graph measures
to predict which nodes properties are influential in a dynamic
process. This would require examining a greater subset of
the hyperbolic graphs to see if our predicted properties match
simulated outcomes.
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diffusion model for social networks.” in ICALP, vol. 5. Springer, 2005,
pp. 1127–1138.

[16] M. Gomez Rodriguez, J. Leskovec, and A. Krause, “Inferring networks
of diffusion and influence,” in Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2010, pp. 1019–1028.

[17] D. Kempe, J. M. Kleinberg, and É. Tardos, “Maximizing the spread
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