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Abstract

This paper provides an overview of the initial design of
a system to provide accurate responses to users’ queries
against a set of information repositories. We present an
overview of techniques from traditional information re-
trieval and filtering, techniques from the more specialised
field of distributed information retrieval (paying particular
attention to the problems of source selection and result fu-
sion) and, finally, we discuss the initial design for our sys-
tem.

1 Introduction

This paper provides an overview for the initial design
of a system to provide accurate responses to user’s queries
against a set of information repositories. We present an
overview of techniques from traditional information re-
trieval and filtering, techniques from the more specialised
field of distributed information retrieval (paying particular
attention to the problems of source selection and result fu-
sion) and, finally, we present the initial design for our pro-
posed system.

The field of distributed Information retrieval has come
to the fore recently in the past few years with the increased
presence of distributed information sources. The need for
efficient accurate techniques to satisfy users’ information
needs against a distributed set of information repositories is
well recognised.

2 Information Retrieval and Filtering

2.1 Introduction

A typical IR system for discussion purposes may be con-
sidered as comprising the following components: document
pre-processing, query processing, document and query rep-
resentation, comparisons of query representation to docu-
ment representation, presentation of retrieved documents,
user feedback and query modification. The objective of any
IR system is to accurately satisfy a user’s information need.
In this section we overview approaches and techniques used
and developed within the field of information retrieval.

2.2 Document Preprocessing

The document preprocessing phase involves applying a
set of well-known techniques to the document collection
to convert it to a format more suitable to the task at hand.
Common approaches include:� Stemming: Stemming algorithms remove common

suffices from terms occurring in the documents.
The goal is to reduce similar words to a com-
mon root form by identifying morphological deriva-
tions of words. Commonly used algorithms include
Lovin’s stemming algorithm[14] and Porter’s stem-
ming algorithm[15].� Thesauri construction: This is often used to iden-
tify synonyms within the texts. Thesauri can be con-
structed via manual or automated approaches. The
former is created with knowledge of the language at
hand; the latter is based on calculating statistics relat-
ing to co-occurrences of terms.� Stop word removal: This involves the removal of
highly frequent terms from documents. These terms



(typically including conjunctions, prepositions etc.)
add little to the semantic meaning of the document.

2.3 Query Processing

Query processing involves query tokenisation, syntax in-
terpretation and query expansion. The terms within a query
are often also subjected to stemming and stop-word removal
algorithms. The query format can vary from system to sys-
tem. The most commonly used are:� Query terms augmented with Boolean operators,

proximity operators and wild-cards.� Natural language text.

However, graphical based query languages and form-based
approaches have also been used.

2.4 Comparison

The type of comparison effected between the user’s in-
formation need and the document set is determined, to a
degree, by the representation chosen. Approaches include:� String matching possibly augmented with proximity

and Boolean operators.� Vector-Space model[19] in which documents and
queries are represented as vectors of dimensionm,
wherem is the total number of terms used to iden-
tify content. Each of these terms has an associated
weight representing its relative importance (based on
frequency within a document and across the docu-
ment collection).� Latent Semantic Indexing (LSI)[7] attempts to over-
come the problems associated with word-based meth-
ods, especially the vector space approach, by organ-
ising textual information into a semantic/conceptual
structure more suitable to information retrieval. The
phrase “latent semantic” refers to the inherent under-
lying associations between words used to express a
particular concept.� Connectionist approaches to IR in which each node
is used to represent an individual keyword. The
search mechanism usually used in these systems is
thespreading activation search(SAS). In this search
strategy, activity is propagated through the document
representations and nodes with a high level of activity
are returned as the result of the search. Connectionist
approaches include Kwok[11] and Belew[2],[3].

2.5 Presentation of results

The most common approach to presenting results to the
user is the ranked list where documents are ordered in de-
creasing order of relevancy. Other approaches have also
been used but are not in widespread use. These include
graphical representations of the closeness of query compo-
nents to returned documents (e.g. the Tilebar system[10]
and the VQuery system[17] or the placing of the re-
turned documents with respect to their relation to other
documents[13].

2.6 Feedback and Query Modification

Relevance feedback has proved to be highly effective for
improving information filtering and retrieval. Upon receiv-
ing returned articles, the user may provide relevance judg-
ments for these articles. These relevance judgments may
subsequently be used to guide the matching function for the
retrieval/filtering system.
Typically, on presentation of the results from the filtering
system, the user is asked to identify which documents are
relevant and which are not. This information, along with
the current user query Qk, is then used to form a new query
Q(k+1).
One well-known relevance feedback technique used in the
vector space model is the Rocchio feedback model[16] in
which a more effective query representation is iteratively
generated:Pk+1 = Pk + � n1Xk=1 Rkn1 � 
 n2Xk=1 Skn2
wherePK+1 is the new profile,P k is the old profile,Rk is
a vector representation of a relevant articlek, Sk is a vector
representation for non–relevant articlek, n1 is the number
of relevant documents andn2 is the number of non–relevant
documents. The values� and
 determine the relative con-
tributions of positive and negative feedback, respectively.

Relevance feedback using this technique has been shown
to result in a significant improvement in retrieval
performance[18].

3 Distributed Information Retrieval

The problem of distributed information retrieval has be-
come a field of much interest in recent years given the large
move towards the distributed paradigm. Factors that have
influenced this move include the performance improvement



possible due to parallelism and also, possibly more im-
portantly, the increased presence of distributed information
sources. The domain provides many very open research
questions. These include:

1. Site descriptions: what techniques are suitable (and
possible) to describe various different sites containing
information repositories.

2. Collection partitioning: If a centralised repository is
present, what means are suitable to distribute the col-
lection across a set of sites?

3. Collection Selection: Upon issuing a query, what
techniques are useful for collection selection?

4. Interoperability in Searching: Many problems exist
in distributing the same query to a set of sites with
different query interfaces. How can this desired in-
teroperability be best achieved?

5. Result merging: Which techniques are suitable for
merging results from a set of sites in order to return
results with high accuracy to the user?

6. Metrics: What metrics are suitable to test the quality
of solutions to the above problems, particularly those
of site selection and results merging?

The actual focus of this research is in the area of result-
merging and associated algorithms. We intend to look at
the feasibility and effectiveness of merging retrieval runre-
sults from separate autonomous collections into an effective
combined result. This is termed collection fusion[21] and
is closely related to the field of database merging. We also
present information on the other aspects of distributed infor-
mation retrieval, but the emphasis is placed on those areas
of most interest to our research.

3.1 Collection Partitioning

Collections can be either distributed via some priori se-
mantic categorisation or randomly distributed to provide
some form of load balancing at query time. The doc-
uments may be semantically partitioned where the docu-
ments are organised into semantically meaningfully collec-
tions by topic or by a categorisation procedure such as clus-
tering.

3.1.1 Interoperability

A broker, if utilised, would have to pass the query to all
systems in parallel for evaluation against its collection,re-
sulting in the production per collection of a locally ranked

list. These intermediate lists would then be merged into to
a final ranked list. Binary heap queues and round robin are
examples of approaches previously used in merging but they
rely upon globally consistent document scores.

Queries can be issued from, and documents results re-
turned to, a central server. A broker such as STARTS (Stan-
dard Proposal for Internet Meta Searching)[9] could be em-
ployed to accept user queries, distribute them to the target
systems, collect results from the server evaluating the query,
combine the results and pass them back to the end user. The
selection of a search protocol for result transmission and
retrieval is therefore important. STARTS is a proposed pro-
tocol designed for heterogeneous distributed searching. It
also has the added advantage that it addresses algorithmic
issues in distributed retrieval such as result merging.

3.1.2 Available Statistics

Global term statistics may be collected in two ways—
compute global terms at indexing time and maintain these
statistics at each relevant collection, or alternatively,have
two round trips in each query (on the first round, collect
statistics from each search process, the combine them into a
single set of global statistics and then on the second round,
issue the query together with the global statistics). The first
approach represents a more efficient approach for executing
queries.

In order to facilitate this first approach, each collection
would require its own inverted file. The global statistics will
also have to be generated and would have to be distributed
to all sites.

Approaches can be categorised into two categories.
These possible approaches depend on whether collec-
tion wide statistics are available or not; in other words,
can centralised indexing be constructed or does the set
of distributed sites include a number of incompatible
and independent collection statistics (termeduncooperative
providersby Callan[4]).

Voorhees et al.[21],[8],[20] adopted the basic assump-
tion that no machine has access to complete statistics on all
documents when evaluating their approaches (query clus-
tering and modelling relevant document distributions).

Callan, et al.[4] worked on the basis that the central
server has access to all statistics for each collection. The
statistics were then compiled into a single structure that
ranked the relevance of each collection to a given query.
Moffet et al.[1] qualified this position by assuming that the



central server had complete statistics on each document col-
lection but used it only as a filter in discarding or including
specific collections.

Danzig et al.[6] provided a mechanism for maintaining
similar groupings automatically by using broker agents to
maintain centralised indexing on a periodic basis by remote
collection querying.

3.2 Ranking

Ranking typically occurs post query processing at the
collection server and again prior to the return of the query
search results to the user. Depending on the nature of the al-
gorithm employed and statistics available the ranking strate-
gies may vary considerably. Ranking algorithms assign
weights to terms in the document and query, compare the
weighted document term to the query term and finally rank
the results.

When the suitable collections (those which will be
queried) have been selected, the retrieval system merges all
rankings from the individual collections into a single ranked
list. If the listings are not ordered then this task is easily
completed as a straight merge. If on the other hand each in-
dividual ranking list is ordered per collection then the prob-
lem posed becomes more complex.

Voorhees et al.[21] investigated ranking collections by
using similarity of training queries to new queries was in-
vestigated. The number of documents to retrieve from
each collection was evaluated by the relevance judgments
for the most similar training query (this approach for dy-
namic collections would not be as effective if used against
static collections). Voorhees investigated interleavingthe
rankings where only the document rankings were available.
Results showed that interleaving via the round robin ap-
proach performed poorly in comparison to uneven interleav-
ing weighted by the relevance of the collection to the query.

Callan et al.[4] ranked using inference (the collection
similarity was calculated as part of source selection). One
system was used for ranking both documents and collec-
tions based upon document frequency and inverse collec-
tion frequency scores. The mean square was then used
to compare the effectiveness of variations to the basic
collection-ranking algorithm. They found that ranking
based upon weights calculated for document scores and col-
lection weights were approximately as effective as weights
based upon normalised scores.

By concentrating collections into blocks of documents

Moffet et al.[1] investigated the generation of centralised in-
dexes on these blocks. For each block of documents in the
centralised index the query returns the block identifier on
its first pass and then only searches the most highly ranked
blocks. Results demonstrated that this approach caused dra-
matic decreases in precision as the number of retrieved doc-
uments increased.

More recently Craswell et al.[5] looked at feature dis-
tance algorithms to assist with ranking. Feature distance is
based upon statistics in a downloaded document header and
term positioning in the document relative to other terms and
document attributes. When used in combination with ref-
erence statistics rather than collection statistics they were
found to be more successful than existing techniques in
an isolated server environment and just as effective in an
integrated-server environment.

3.3 Source selection

Many approaches exist to identify a subset of relevant
sources against which to search when attempting to satisfy
a given query. One could assume that each is equally likely;
this is viable if documents are randomly partitioned. On the
other hand, if semantically organised, one could:

1. Search each relevant site; potential to miss relevant
documents at a site is deemed irrelevant

2. Map each collection as a large document and create
an index of these. At query time, compare the query
to this index to identify best sites. This suffers from
the same problem mentioned above.

3. Build a model based on test queries. This involves the
maintenance of a database of queries and distribution
of relevant documents. For each new query, previous
similar queries are found and an estimate regarding
the distribution of relevant documents is produced.

4. Rule-based approaches

Due to the fact that in large distributed environments
there will be collections containing documents that will be
more relevant than others, we should have a process or algo-
rithm to assist in determining which of the collections will
contain relevant documents and therefore should be sent the
query for processing. If we assume that each collection
will have an equal probability of containing a relevant doc-
ument, the query can be forwarded to each collection. For
documents occurring on a random distribution basis across
the collections this approach works well but as we have
some degree of document portioning it would be better to



rank each collection as to the probability of containing rel-
evant documents.

3.4 Merging

Strategies for merging can be divided into two
categories, namely isolated methods and integrated
methods[20]. Integrated methods require the server to pro-
vide specific information for use in merging while isolated
methods do not. The strategies will define the statistics
available when ranking and merging and the approaches
taken to generate the merged ranking lists will therefore
vary.

3.4.1 Integrated

Collection statistics are required for ranking algorithms
in singular or unified collections to provide for effec-
tive searching. The merging strategy adapted typically
utilises server software and communication protocols such
as STARTS to assist in the collation of server collections.
In this way statistics such as document frequencies, used to
determine relevance can be generated across all collections
to produce comparable document scores.

The collection server uses these statistics together with a
ranking algorithm (used by all servers) to produce a set of
comparable document scores. The client or central server
then applies a ranking algorithm to generate a merged rank-
ing of all documents based upon relevance score.

An obvious advantage to this approach is that allowable
document scores are generated across all collections. The
disadvantages to this approach (and they depend on the en-
vironment that the solution is being applied to) are that:� A database selection algorithm is used to decide

which collection should receive the query.� When the queries are issued, they will, by necessity,
include server statistics and the software will resul-
tantly be complex.� There must be some form of standard client-server
communication protocol adapted

Another approach requires that searched servers provide
collection statistics with the query search results[9]. The
client then combines rankings of the various sets of col-
lection information from each server into a single merged
list. The document score may be supplied with the collec-
tion statistics or information extracted for down-loadingthe

document itself from its server. The user query will, there-
fore, if using a standard statistics gathering protocol, not
require prior targeting as in the first approach.

Rather than collating the entire set of collection statis-
tics, one need only collate a set of reference statistics to
produce a reference statistics database[5]. The reference
database would contain statistics for a smaller set of docu-
ments. Craswell et al.[5] suggest 10% of the overall collec-
tion. The reference statistics would then be substituted in
place of collection statistics and fed to a ranking algorithm

Due to the additional server functionality and commu-
nication overhead the efficiency of relevant retrieval is af-
fected but the availability of collections statistics can im-
prove merging effectiveness.

3.4.2 Isolated

Isolated methods utilise information available from docu-
ment and search servers obtained without special protocol
or functionality. Potential informational sources for proba-
bilistic, vector space and inference include:� Score based

Documents are assigned scores to determine rele-
vance. These raw scores are server specific and
are generated from collection statistics that are not
shared. Consequently, they are incomparable.� Rank based
A document is assigned a rank number based upon a
collection from a particular server. These are then
used to produce the ranked server list that can be
interleaved. Document distance from a list may be
weighted in proportion to server promise as an N-
Sided dice and used to determine document ordering
as in Voorhees Interleaving[20].� Content based
The document is down-loaded from the collection
server to the client where it is analysed and receives
a merged ranking without the use of collection statis-
tics (e.g. INQUIRIS[12]). As documents are down-
loaded the merged list will always be current and
not impacted by individual collection additions or re-
movals.

Voorhees, et al.[21][20],[8] presented the two isolated
merging strategies of:� Modelling Relevant Document Distribution (MRDD)

The relevant document distribution can be modelled



by calculating the average of the most relevant doc-
ument distributions from the most similar training
queries. Training queries are used to model the con-
tent and search behaviour of each collection. Amal-
gamating each document set will provide a single set
of documents for retrieval but will not impose a rank-
ing system. Instead MRDD will order documents
probabilistically.� Query Clustering (QC)
The system learns the measure of the quality of a
search for a particular topic in the collection. Topic
areas are represented as centroids of query clusters.
Similarity measures per collection from the set of
training queries are clustered using the common doc-
uments retrieved. Queries are clustered using Wards
clustering method.

Both MRDD and QC are dependent on the training set
and the effectiveness of its final ranked list. They are not
really effective in environments where user queries differ
greatly.

3.5 Merging Algorithm Selection

Available approaches are based upon the rankings and
available statistics. At the most basic level if we consider
that all collections have equal numbers of documents, the
document rankings can then be interleaved. As already
noted this form of simple interleaving will not provide sat-
isfactory results.

Some systems return, in addition to the document rank-
ing, a score indicating relevance of the query to the docu-
ment. If the collections have used the same processing al-
gorithm or they are compatible the document score rankings
can be merged. This is termed a raw score merge. Voorhees
et al[21] using SMART, evaluated a merge-sort approach
where the same assumption is made. They found that re-
sults were less relevant than that received from a single col-
lection.

If incompatible, then we are faced with the problem that
weightings assigned to words can vary considerably. This
has both positive and negative repercussions. It can indi-
cate the term’s importance in a collection or if the term is
used randomly or commonly across a number of collections
then the behaviour will be erratic (Dumais [13]). The terms
importance can be measured for a collection by itsidf or
inverted document frequency score. Incompatibly can be

addressed by application of normalisation to the scores.

Incorporating collection statistics along with the doc-
uments score, weights and weighting scores can be gen-
erated. Assuming that similar collections have similar
weights, the collection’s score can be used rather than its
weight to provide the following example of howw can be
calculated. The product of the documents weight and score
provides the ranking ensuring that documents from collec-
tions with high scores receive high relevance ratings and
relevant documents in collections with low scores are also
allowed good ratings.w = 1 + jN j � 
� 
m
m
WherejN j is the number of collections searched,
 is the
collection score and
m the mean collection score.

When the merging strategy has access to document fre-
quency statistics for each collection other approaches can
be considered.

Incompatible scores can be resolved in certain cases by
normalising the document frequencies using a weighting
such asidf generated using the collections. This will pro-
vide the same result as if the collections were merged into a
single collection.

4 Proposed Architecture

4.1 Introduction

It is assumed that a number of search servers are avail-
able each with the capability of generating their own and
others indexes. These servers should be considered as iso-
lated uncooperative providers as there may be no visibility
or control over the collections document score generation.

In order to provide for increased extensibility we will make
few assumptions regarding the content of any site or the
querying capabilities provided.

4.2 Overview

The challenge is to develop an integrated distributed IR
system whose skeleton incorporates the following:� A set of collections that may or may not have some a

priori categorisation. Some collections may be topi-
cally organised, either automatically or by an individ-
ual. Other collections (e.g. email correspondences)



may be organised chronologically. We will make no
assumptions regarding the nature of any individual
collection regarding any semantic or chronological
categorisation. This will enhance robustness and ex-
tendibility of any algorithms we employ for source
selection or result fusion. Any preference for one site
over another in either the source selection of result
fusion components will be derived from evidence ob-
tained from user-feedback.� Local indexes available at each collection. Each site
will provide an interface that will accept a query from
the user and return a ranked list. Again, the actual im-
plementation or algorithms employed cannot be as-
sumed to be known in advance. In reality, initially,
the sites will be largely homogeneous in nature em-
ploying some well-known accepted comparison algo-
rithm (e.g. vector space).� Communication query via a web user-interface to the
search servers� A means to accept individual ranked lists from dis-
tributed servers� Localised central merging to determine relevance and
presentation to the user of final merged list rankings.
The algorithm employed here should ideally take into
account available information such as:

– Individual/group profiles: learning can be in-
corporated via feedback from individual users.
This can be interpreted for individual users or at
a group level where users will have overlapping
interests.

– Learning based on query types: Certain queries
may be common throughout the whole set of
users. From any evidence garnered from feed-
back (implicit or explicit) we can modify the re-
sults. Note that feedback for both these cases
can be used to modify the query using tradi-
tional feedback mechanisms but can also be em-
ployed to modify our heuristics for source selec-
tion.� Source selection and ranking based on updated values

learned from user feedback.

4.3 Experiments

Given the above architecture, it will necessary to test the
performance of the system. It is envisioned to use the TREC
data collection (or subset of) and distribute it across a setof

sites.

The standard metrics of precision and recall will be em-
ployed to illustrate and gauge the performance of our sys-
tem.

We will wish to test the behaviour of our learning algo-
rithms based on user feedback by comparing our results to
those obtained by a straightforward round-robin approach.

4.4 Summary

In this paper we have presented an overview of work in
information retrieval and distributed information retrieval.
The main open research questions in the domain of dis-
tribute information retrieval are discussed with particular
emphasis on those of relevance to the architecture proposed.
We have also briefly outlined the basic architecture and ex-
perimental set-up to test a number of features of our design.
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