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Abstract

Much debate has centered on the nature of social dilem-
mas. In environmental issues, trade-wars, negotiations be-
tween countries and social interactions, there are many sce-
narios where involved players may choose altruistic, coop-
erative action or an alternative selfish behaviour.

Games, particularly the prisoner’s dilemma and varia-
tions have been used to model and analyse such scenarios.

In this paper, an overview of research in this domain is
presented. The iterated prisoner’s dilemma (IPD) is dis-
cussed with attention payed to evolution of strategies in this
environment, the effect of noise in the IPD and finally N-
player versions.

1 Introduction

Much debate has centered on the nature of social dilem-
mas. In environmental issues, trade-wars, negotiations be-
tween countries and social interactions, there are many sce-
narios where involved players may choose altruistic, coop-
erative action or an alternative selfish behaviour. In many
cases, it appears that the selfish action is more beneficial
and is the rational choice to take; however we encounter
time and time again, people (and groups) choosing the ap-
parently non-rational altruistic option. Examples include
people investing time, money and effort in environmental
issues and charity organisations.

Thomas Hobbes[18] presented a rather pessimistic ex-
planation as to how cooperation can be maintained in a
group of interacting agents; he argued that prior to the ex-
istence of governments that nature was dominated by self-
ish agents resulting in a life that was “solitary, poor, nasty,
brutish and short”. He believed that without a controlling
authority, cooperation was impossible. Olson[35] agreed
with the classical conclusion that coercion or selective in-
centives are necessary to achieve cooperation.

More recent work, most notably that of Robert
Axelrod[1], has shown that cooperation can emerge as a
norm in a society comprising entities with individual selfish
motives.

The most oft studied games in this domain are the Pris-
oner’s Dilemma (PD) and variations such as the Iterated
Prisoner’s Dilemma (IPD). The prisoner’s dilemma cap-
tures, in an abstract manner, the salient features of many
social dilemmas rendering it a fascinating problem to anal-
yse in attempting to understand phenomena such as cooper-
ation, altruism and free-riding. In this paper, research and
results in the prisoner’s dilemma are reviewed.

2 Prisoner’s Dilemma

In the prisoner’s dilemma game, two players are both
faced with a decision—to either cooperate(C) or defect(D).
The decision is made by a player with no knowledge of the
other player’s choice. If both cooperate, they receive a spe-
cific punishment. If both defect they receive a larger pun-
ishment. However, if one defects, and one cooperates, the
defecting strategy receives no punishment and the coopera-
tor a punishment (the sucker’s payoff). The game is often
expressed in the canonical form in terms of pay-offs:

Player 1
C D

Player 2 C ( ��� , ��� ) ( ��� , ��� )
D ( ��� , ��� ) ( ���
	���� )

where the pairs of values represent the pay-offs (rewards)
for players Player 1 and Player 2 respectively. The
prisoner’s dilemma is a much studied problem due to it’s
far-reaching applicability in many domains. In game the-
ory, the prisoner’s dilemma can be viewed as a two-person,

1



non-zero-sum, non-cooperative and simultaneous game. In
order to have a dilemma the following must hold: � ���
��� � ��� � ��� , where ��� is the sucker’s payoff, ��� is the
punishment for mutual defection, � � is the reward for mu-
tual cooperation and ��� is the temptation to defect. The
constraint �
����� ����� ��� also holds.

The prisoner’s dilemma and applications has been de-
scribed in many domains including biology[12][13][25],
economics[38] and politics[6].

3 Iterated Prisoner’s Dilemma

The game becomes more interesting, and more widely
studied, in the iterated version where 2 players will play
numerous games (the exact number not known to either
player). Each player adopts a strategy to determine whether
to cooperate or defect at each of the moves in the iterated
game.

3.1 Strategies

Before discussing the main results obtained in the iter-
ated prisoner’s dilemma it may be instructive to try to clas-
sify the strategies.

periodic: strategies play C or D in a periodic manner.
Common strategies: ALL-C, ALL-D, (CD)*, (DC)*,
(CCD)*, etc.

random: strategies that have some random behaviour. To-
tally random, or one of the other types (e.g. periodic)
with a degree of randomness.

based on some history of moves: tit-for-tat (C initially,
then D if opponent defects, C if opponent cooper-
ates), spiteful (C initially, C as long as opponent co-
operates, then D forever), probers (play some fixed
string, example (DDC) and then decides to play tit-
for-tat or ALL-D (to exploit non-retaliatory), soft-
majo (C initially, then cooperate if opponent is not
defecting more than cooperating).

There are many variations on each of the above type of
strategies.

3.2 Results

A computer tournament[1] was organised to pit strate-
gies against each other in a round-robin manner in an at-
tempt to identify successful strategies and their properties.

The winning strategy was tit-for-tat (TFT); this strategy in-
volved cooperating on first move and then mirroring oppo-
nents move on all subsequent moves.

The initial results and analysis showed that the following
properties seemed necessary for success—niceness (coop-
erate first), retaliatory, forgiving and clear.

In a second tournament[1], of the top 16 strategies, 15
were found to be nice. These results seem to indicate that
cooperative strategies are useful if there is a high chance the
strategies will meet again.

Further analysis involved the development of a genetic
algorithm to evolve successful strategies. The more suc-
cessful strategies tended to be more complex than the tradi-
tional TFT and violated the fourth heuristic (that of clarity)
proposed by Axelrod :”Don’t be too clever”; these strate-
gies are quite complex.

Beaufils et al[3] question that last property and develop a
strategy gradual � which is far more complex than tit-for-tat
and outperforms tit-for-tat in experiments.

The forgiving[33] strategy also challenges the final prop-
erty; forgiving is not clear or simple and has proven strong
in environments similar to those used by Beaufils[3].

No best strategy exists; the success of a strategy depends
on the other strategies present. For example, in a collection
of strategies who defect continually (ALL-D) the best strat-
egy to adopt is ALL-D. In a collection of strategies adopting
a tit-for-tat strategy, an ALL-D strategy would not perform
well.

3.3 Stability

This type of reasoning leads to the question of which
strategies can continue to exist—do stable strategies exist?
This question was first addressed by Maynard-Smith[37]
who introduced the concept of an evolutionary stable
strategy—a strategy is (collectively) stable if no other strat-
egy can invade it; by invade we mean that a new strategy
scores higher interaction with a native strategy than a native
strategy does interacting with a native strategy.

An evolutionary stable strategy must be a ‘best response’
to itself, because a mutant playing a better response would
�
gradual performs like tit-for-tat, in that it cooperates on the first move.

It retaliates upon defection. On the first defection it responds with a defec-
tion(D), followed by 2 cooperations(CC). Following the second defection,
it responds with 2Ds, followed by 2Cs and so forth.



have a higher average payoff[37].

Maynard-Smith[37] defines the concept of a strongly sta-
ble strategy as follows: A strategy is strongly stable if it will
drive any invaders to extinction. More formally, a strategy �
is strongly stable if:

��� ��	���� � ����� 	��	� or��� ��	�����
 ����� 	 � � and
��� ��	 � ��� ����� 	 � �

where � and
�

are strategies and
��� ��	 � � is the reward ob-

tained by � when playing against strategy
�
.

For any strategy � , there can exist strategies that are dif-
ferent from � but perform against strategy � and itself as
strategy � would. Hence, Maynard-Smith’s definition of
strong stability can not hold.

A strategy is weakly stable if it will not be driven to ex-
tinction by any invaders. A strategy � is weakly stable if:

��� ��	���� � ����� 	��	� or������ � 	��	��
 ����� 	 � � and
��� ��	 � ��� ����� 	 � ��

This definition was first proposed by Bendor and
Swistak[7].
The evolution of cooperative can be viewed as three sepa-
rate questions[2]:

� Robustness: what type of strategy can
thrive in a variegated environment?� Stability: under what circumstances can
such a strategy, once fully established, re-
sist invasion by mutant strategies?� Initial viability: even if a strategy is ro-
bust and stable, how can it get a foothold
in an environment which is predomi-
nantly non-cooperative?

Attempts have been made to answer the above questions
via simulations. The final question requires simulations that
mimic “survival of the fittest” behaviour. These experi-
ments which breed strategies in an evolutionary setting are
reviewed in the next section.

4 Evolution of strategies

4.1 Introduction

A natural means to explore more fully the range of strate-
gies and their performance is to adopt ideas from the do-
main of evolutionary computation. In these approaches, one

attempts to evolve suitable strategies. The most well-known
approach is that of genetic algorithms[21], where a popula-
tion of solutions is created and then subjected to the process
of evolution. The initial population (randomly created) rep-
resents a set of strategies. The process mimics Darwin’s
theory of evolution (‘survival of the fittest’), where fitter so-
lutions are passed on the subsequent generations possibly
subjected to the operations of mutation and crossover (mat-
ing) to create newer, possibly fitter, solutions.

The question of representation of strategies is an impor-
tant one—how should strategies for the iterated prisoner’s
dilemma be represented in a way suitable for genetic algo-
rithms and other evolutionary algorithms .

We outline, briefly, some approaches and results:

Nowak and Sigmund[32] use a triple to represent a set
of reactive strategies. The triple of values indicate, respec-
tively, the probability of cooperating on the first move, the
probability of cooperating following an opponent’s cooper-
ation and the probability of cooperating following a defec-
tion. tit-for-tat can be represented as

�	� 	 � 	���� .
In most experiments, defection evolved as the norm.

When one of the initial strategies are close to tit-for-tat, co-
operation can flourish, but having eliminated the exploiters,
tit-for-tat is superseded by a strategy closer to GTFT �

A more expressive representation used in later experi-
ments involved the use of four probabilities indicating the
probability of a strategy cooperating following a (C,C),
(C,D), (D,C) and (D,D) respectively. Following simula-
tions, states of mutual cooperation were evolved. Over 90%
of strategies were of the type Pavlov[23] � . The remaining
comprised tit-for-tat and GTFT.

Linster[24] uses Moore machines to represent strategies.
In these experiments it was shown that no one strategy dom-
inated the environment. The most successful strategy was
spiteful � (aka GRIM, TRIGGER).

Beaufils[4] attempt to analyse the different classes of
strategies for the iterated prisoner’s dilemma using evolu-
tionary computation techniques. Three different types of
genotypes (which encode the phenotype) are explored:

�
GTFT, initially described by Molander[29] has probability of cooper-

ating following a cooperation equal to 1, and probability of cooperating

following a defection equal to min ��������� �"!"#$�&%	'� �(%)#$�+*�'
,.- �/�&%�#0�21)'�/�+!2#0�21)'

,3
The Pavlov strategy acts as follows: if on the previous move both

strategies performed the same action, Pavlov cooperates; otherwise it
defects4

Spiteful cooperates on its first move and continues to cooperate as long
as its opponent does so; following a defection, spiteful continues to defect)



� memory: each strategy can see past moves.

� binary memory: similar to the previous, but in this
case the move is based on past moves and whether
the opponent has defected more often than it has co-
operated.

� memory automata: represents a two state automata.

This approach presents a mechanism to represent a large set
of strategies in an unbiased means.

Each genotype contained 19 genes representing various
features of the strategy—the first move to make, random
defection, how to detect defection, punishment thresholds,
forgiveness, etc. Some interesting results, other than the
evolution of complex successful strategies were also found,
namely:

� the gene determining the first move converged to 1
indicating that the strategy should always cooperate
on the first move.

� the gene determining the degree of random defection
quickly converged to 0 indicating that unprovoked de-
fection is a bad idea.

� forgiveness is not always a good idea; strategies
should not forgive defecting strategies.

Harrald and Fogel[16] use single-layer feed-forward
neural networks to represent strategies. The inputs (six in
total) to the neural network represent the previous three
moves by both players. All networks played against each
other in a round-robin manner; the fitness assigned to the
networks is a function of the score obtained by the network.
The networks in the fitter half of the population were chosen
to become parents in the next round.

Cohen et al.[10] report on the factors that promote coop-
eration. They attempt to explore the emergence and main-
tenance of cooperation by analysing the effect of 3 fac-
tors: strategy space, interaction processes and adaptive pro-
cesses. They show that cooperation can emerge given ran-
dom mixing of agents. The three dimensions are repre-
sented as:

� Strategy Space

1. Binary strategy: each strategy is represented as
a triple

� ��	�� 	�� � , � representing the first move, �
representing the probability that the strategy co-
operates, � the probability that the strategy de-
fects (� and ����� ��	 �	� )

2. Continuous: as above but � and � may range
across the interval 
 ��	 ���

� Interaction Processes: a set of 6 interaction types are
defined—including fixed neighbourhoods, randomly
selected etc.

� Adaptive Processes: specifies techniques by which a
strategy can adapt over time—by imitation, by using
best solution encountered so far incorporated via GA
operators

5 Noisy environments

The majority of work in the iterated prisoner’s dilemma
has focussed on the games in a noise-free environment, i.e.,
there is no danger of a signal being misinterpreted by the
opponent or the message being damaged in transit.

This assumption of a noise-free environment is not nec-
essarily valid if one is trying to model real-world scenarios.

There are different means that can be chosen to introduce
noise to the simulation:

� mis-implementation (when the player makes a mis-
take implementing its choice)

� mis-perception (when one player misperceives the
other player’s signal or choice)

Bendor[5] effects noise by introducing payoffs that are
subjected to error. Upon cooperation in face of defection by
an opponent, a person receives the payoff  ��� , where e is
random with expected value � .

In [15], it is argued that “if mistakes are possible evo-
lution may tend to weed out strategies that impose drastic
penalties for deviations”.

Kahn and Murnighan [22] find that in experiments deal-
ing with prisoner’s dilemma in noisy environments, cooper-
ation is more likely when players are sure of each other’s
payoffs. Miller’s experiments in genetic algorithms ap-
plied to the prisoner’s dilemma results in the conclusion
that cooperation is at its greatest when there is no noise in
the system and that this cooperation decreases as the noise
increases[28].

Some ideas to promote cooperation in environments
have been posited by Axelrod; these include genetic kin-
ship, clustering of like strategies, recognition, maintaining
closeness when recognition capabilities are limited or ab-
sent (e.g limpets in nature), increasing the chance of fu-
ture interactions (certain social organisations, hierarchies
in companies etc.), changing the pay-offs, creating social
norms where one learns cooperation.

Hoffman[20] reports that results are sensitive to the ex-
tent to which players make mistakes either in the execution
of their own strategy (mis-implementation noise) or in the



perception of opponent choices (mis-perception noise). In
particular, cooperation is vulnerable to noise as it is sup-
ported by conditional strategies. For example, in a game
between two TFTs, a single error would trigger a series of
alternating defection. Axelrod (1984) repeated his initial
round-robin tournament with added 1% chance of players
misunderstanding their opponent’s move in any round. He
found that TFT still came first despite some echoes of retal-
iation between cooperative strategies.

It can be shown that higher degrees of noise can be detri-
mental to TFTs performance. Given noise of � percent, TFT
against itself can be captured via the following transition
matrix.

�� ���� � � � �
�	��� � � � � ��	��� � � � �	��� � � � � � � �	��� � � �

� � �
�	��� � � � ���� � � �

��

Solving above equations, we find that for any noise
(� � � ), we get � 
 � �

� 	
�
� 	

�
� � .

A number of authors confirm the negative effect of noise
of TFT and find that more forgiveness promotes coopera-
tion in noisy environments[5] Mueller [31].

Other interesting results are also reported. These in-
clude ‘pavlovian’ strategies which are more likely to avoid
spirals of defection that tit-for-tat[23] (also shown
to perform well in[27]), the lowering of levels of coop-
eration in a society without the introduction of defect-
ing strategies[28][26], the effect of highlighting differ-
ences between strategies that would coexist in noise-free
environments[8].

6 Spatial

Note that some research has indicated that it is not nec-
essary to look to the iterated versions for more interesting
behaviour to occur. Work by Epstein [14] into spatial zones
indicate that more interesting behaviour (e.g mutual coop-
eration) can emerge and exist in the non-iterated version of
the game.

Similar work on the effect of spatial organisation of
strategies was undertaken by Oliphant[34] who showed, via
a series of simulations, that in the absence of spatial con-
straints, the population quickly fell into defection. How-
ever with spatially constrained populations, it was possible
to evolve and maintain cooperative behaviour.

7 Related Dilemmas and problems

7.1 Lift dilemma

Another game, closely related to the prisoner’s dilemma,
is the lift dilemma in which two players interact. The first
equality associated with the prisoner’s dilemma holds but
the second inequality is changed. This leads to the scenario
where there now exist two forms of cooperation—mutual
cooperation as in the prisoner’s dilemma and a more suc-
cessful form where two strategies alternate between pairs of
(C,D) and (D, C); in effect they take turns at obtaining the
the sucker’s payoff, in order to obtain the maximum pay-off
on the next turn.

Delahaye and Beaufils[11] present REASON which
plays a C initially with some probability on the first move
and while the previous round is phased. On subsequent
moves, this the strategy plays either (C,D) � or (D,C) � . A
variation on this REASON-TFT which plays C with some
probability on the first move and while the previous round
is phased; else tit-for-tat is played. Both of these flourish in
an evolutionary simulation and can illicit the higher form of
cooperation than that obtained with successful strategies in
the traditional iterated prisoner’s dilemma.

7.2 N-player dilemmas

One prime example of an N-player dilemma is the
Voter’s paradox “where it is true that a particular endeavour
would return a benefit to all members where each individ-
ual would receive rewards, it is also true that any member
would receive an even greater reward by contributing noth-
ing”. Elections, environmental actions and the tragedy of
the commons are all examples of this phenomenon.

In such games, each player can choose to defect or coop-
erate and there is no external central control; in this scenario
cooperation is costly and defection is cost-less, hence ratio-
nal self-interested individuals should always defect, even
if the group outcome from joint defection is not Pareto
optimal. Common mechanisms to ensure cooperation is
through reputation based schemes; however in many real-
world scenarios players are largely anonymous. In these
scenarios it is expected that the dominant strategy be one of
defection.

In an n-player dilemma, each player faces a choice be-
tween two alternatives: to cooperate or to defect. The pay-
offs are functions of the number of cooperators. Let

� �
	�� ���
denote the pay-off for cooperators and

���
�� �	� the pay-off
for defectors given � cooperators.



According to Molander[30] the following conditions
should hold:

� monotonicity:
��� 	�� �	� � ���
	�� � � � � and

���
�� �	� ����
�� � � � � , � 
 � 	 � 	 ����� �
� dominance of the D alternative:

���
�� �	� � � �
	�� �	� ,
� 
 ��	 � 	 ����� � � �

� efficiency of cooperation
� � � � � ��� 	�� �	� � �

�
� � �� � ���
�� � � � � � � ��� 	 � � � � � � �

�
� �	� ���  � �	� , � 
� 	 � 	 ����� � and

��� 	 �
�
� � ��� ���  � � �

Boyd and Richerson [9] also tackle the problem of evolu-
tion in N-player games; they show that cooperation is more
difficult to illicit with large groups. In their model, groups
are formed by sampling N individuals from the population
who interact in the a repeated n-person dilemma. Using
a similar formalism to that above, from their analysis of
strategies TFT and ALL-D, the authors conclude that co-
operation is only ever to emerge in extremely small groups.

Recent work by O’Riordan and Bradish[36], simulates
an environment where players are engaged in many differ-
ent types of games ranging from the traditional 2-player
game to games involving many players. Preliminary results
show that cooperation can emerge given a high percentage
of 2-player games.

8 Summary

This paper gives a brief overview of current and past re-
search in the domain of the prisoner’s dilemma. Included in
the paper is a discussion of the prisoner’s dilemma and the
iterated version and in related versions (noisy environments
and spatial constraints).
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