
Combining Feature Selection and Neural Networks for Solving Classification
Problems

Paul O’ Dea, Josephine Griffith, Colm O’ Riordan
Information Technology Department,

National University of Ireland, Galway,
Galway

Abstract

This paper presents an approach to solving classification problems by combining feature selection and neural networks.
The main idea is to use techniques from the field of information theory to select a set of important attributes that can be used
to classify tuples. A neural network is trained using these attributes; the neural network is then used to classify tuples. In this
paper, we discuss data mining, review common approaches and outline our algorithm. We also present preliminary results
obtained against a well-known data collection.

1 Introduction

Data mining has been defined as “The nontrivial extraction of implicit, previously unknown, and potentially useful infor-
mation from data”[3]. The field, also known as knowledge discovery, has parallels in the machine learning community and
has recently been afforded much attention in the field of e-commerce.

The task usually involves extracting knowledge or information which is implicit in the data collection. For example, in
some database or data warehouse of records, one may be interested in discovering implicit relationships between certain
attributes (or sets of attributes).

Techniques used in the field of data mining range from AI based learning algorithms (borrowing ideas from statistics and
information theory) to neural network based approaches.

In this paper we discuss, briefly, common problems in the field (Section 2) and well-known approaches with emphasis
on ideas from information theory and neural networks (Section 3). In Section 4 we present our algorithm which is in effect
a neural network approach combined with feature selection. We discuss our motivations and the design of the algorithm.
Section 5 includes initial results and discussion of results obtained to date.

2 Data Mining

Data mining techniques are predominantly applied to the problem of finding association and classification rules, as well as
to the problems of item-set recognition and sequential pattern recognition. Classification is discussed in considerably more
detail than the others given the focus of this paper.

1. Classification Rules: Classification is the process of finding the common properties among different entities and clas-
sifying them into classes. The results are often expressed in the form of rules - classification rules. By applying the
rules, entities represented by tuples can be easily classified into the different classes to which they belong.

Given a set of tuples of attributes , a classification rule may take the form:

c c C

We can restate the problem formally defined by Agrawal et al.[1] as follows: let be a set of attributes)
and dom refer to the set of possible values for attribute . Let be a set of classes . We are given
a data set, the training set whose members are +1-tuples of the form where dom

, and .

For example, a retail outlet may wish to classify customers into classes so as to adopt an advertising strategy to
maximise profit. So customers may be placed in disjoint classes based on age, salary, previous purchases etc.; based
on these classes, different products might then be advertised differently.

2. Associations: Association rules specify associations between sets of items. Given a relation comprising attributes
, the goal is to extract association rules which involves selecting two subsets of values for attributes

and such that there is some association between the sets.

3. Itemset recognition is a form of association rule where the goal is to identify sets of items that occur together with a high
frequency. Many variations exist on this item-set problem: determining itemsets given the existence of a hierarchical
categorisation of items, determining time-dependent sequences of item-sets. The goal with sequential patterns is to
derive a pattern of events or actions in the set of tuples. One wishes to detect a form of association rules between tuples
with certain temporal constraints.

2.1 Applications

Data mining techniques are applicable to a wide variety of problem areas. Currently, the main application area for data
mining is e-commerce where it is used to understand and target each customer’s individual needs by highlighting both
customer preferences and buying patterns from databases containing customer and transaction information. With this infor-
mation, companies can better target customers with products and promotional offerings.

A number of financial applications also use data mining techniques. Examples include picking stocks, detecting fraud,
commerical lending decisions etc.

3 Techniques and Approaches

Many data mining techniques and approaches have been developed and used. Common approaches are outlined below:

Decision Trees

This technique recursively partitions the data set until each partition contains mostly examples from a particular
class[4]. In a decision tree, each internal node represents a split point which tests some property where each pos-
sible value of that property corresponds to a branch of the tree, leaf nodes representing classifications.

An object of unknown type may be classified by traversing the tree, testing the object’s value for each property at an
internal node and taking the appropriate branch. Eventually a leaf node will be reached which represents the object’s
classification.

ID3[8] represents concepts as decision trees. The ID3 algorithm constructs decision trees from a set of examples using
a top down approach. The examples are tuples where the domain of each attribute of these tuples is limited to a small
number of examples, either symbolic or numerical.

Decision trees are popular because they are easy to understand and results are reasonably accurate. The rules for
classifying data are in a form readily understood by humans. However, the performance of the decision tree depends
critically upon how the split point is chosen. Often splits between branches are not smooth and the choice of split

is made regardless of the effect such a partition will have on future splits. Additionally, in the presence of noise or
missing attribute values in the data set, there can be problems with performance.

Neural Networks
Neural networks, a form of subsymbolic computation, are based (simplisitically) on the workings of the brain. A neural
network comprises a set of weighted edges and nodes. Learning is achieved by modification of these weights. Most
networks contain a number of layers, the first layer being the input layer, the final layer being the output layer. Other
internal layers (hidden layers) are often required to ensure sufficient computational power in the network.

A network can be trained to map input values to corresponding output values by providing a training set. The network
is repeatedly tested and modified to produce the correct output.

The generation of output by a neural network is accomplished via firing values from nodes. An input is passed to the
input layer which in turn can activate the internal layers, which in turn activates the output layer, finally resulting in an
output.

Given links feeding into a node, each link has an input value and a weight . The nodes have an associated
threshold, . If, according to some activation function, the node has a sufficiently high activation level, the node fires
a value onto the next layer. Commonly used activation functions include:

if
otherwise

where , the activation of a node, is and is a threshold. The initial input vector is fed into the network;
sets of nodes are fired which finally results in an output vector.

(Note: the above description relates to a simple feed-forward network; other more complicated (and computationally
expressive) architectures are possible).

To train the network, any errors in the output are fed back through the network causing a modification of the weights
on the nodes. Errors can be calculated at the output layer. For internal nodes, the error is a function of all nodes that
use the node’s output and the output from that node.

The error at the output layer is used to re-modify the weights coming to the output layer. This allows the calculation of
errors at the last hidden layer etc. The error is back-propogated throughout the network.

An example of a system which uses a neural network approach is NeuroRule[5] where the number of input nodes
corresponds to the dimensionality of the input tuples and the number of output nodes is equal to the number of classes
to be classified. The first stage, network training, is terminated when a local minimum is reached. Secondly network
pruning is carried out, and finally extraction of the classification rules from the pruned network.

The major criticisms of a neural network approach include the fact that because neural networks learn the classification
rules by multiple passes over the training data set, the learning time, or the training time needed for a neural network to
obtain a high classification rate, is usually long[1]. In addition, there is difficulty in understanding the rules generated
by neural networks as they are buried in the network architecture and the weights assigned to the links between the
nodes. Also, there is difficulty in incorporating any available domain knowledge.

3.1 Information Theory

Information theory is widely used in computer science and telecommunications, including such applications as determin-
ing the information-carrying capacity of communications channels, developing data compression algorithms, and developing
noise-resistant communication strategies. Information theory provides a mathematical basis for measuring the information
content of a message[2].We may think of a message as an instance in a universe of possible messages; the act of transmitting a
message is the same as selecting one of these messages. From this point of view, it is reasonable to define the information con-
tent of a message as depending upon both the size of this universe and the frequency with which each possibe message occurs.

Shannon formally defined the amount of information in a message as a function of the probability of occurrence of each
possible message[9]. Given a universe of messages, and a probability, , for the occurrence
of each message, the information content of a message in is given by:

The information in a message is measured in bits. This definition formalises many of our intuitions about the information
content of messages.

We may think of each property of an instance as contributing a certain amount of information towards its classification.
The ID3 family of decision tree induction algorithms use information theory to decide on which attribute, shared by a col-
lection of instances, to next split the data[8]. ID3 measures the information gained by making each attribute the root of the
current subtree. It then picks the attribute that provides the greatest information gain. Attributes are chosen repeatedly in this
way until a complete decision tree that classifies every input is obtained.

For example, consider the problem of estimating an individual’s credit risk on the basis of such properties as credit history,
current debt, collateral, and income [6]. Table 5 lists a sample of individuals with known credit risks. We may think of a
decision tree as conveying information about the classification of examples in the decision table; the information content of
the tree is computed from the probabilities of the different classifications. For example, if we assume that all the examples in
Table 5 occur with equal probabilities, then

p(risk is high) =
p(risk is moderate) =
p(risk is low) =

It follows that the information in the table, and consequently any tree that covers those examples, is

For a given test, the information gain provided by making that test at the root of the current tree is equal to the total
information in the tree minus the amount of information needed to complete the classification after performing the test. The
amount of information needed to complete the tree is defined as the weighted average of the information in all its subtrees.
The weighted average is computed by multiplying the information content of each subtree by the percentage of the examples
present in that subtree and summing these products.

Assume a set of training instances, . If we make property , with values, the root of the current tree, this will partition
into subsets, . The expected information needed to complete the tree after making the root is:

The gain from property is computed by subtracting the expected information to complete the tree from the total information
content of the tree:

4 Algorithm

As discussed earlier, neural networks provide a powerful mechanism for classification obtaining high precision whilst
being robust in the presence of noise. Unfortunately the time to train a network can be prohibitive and the classification rules
can be buried in the neural network architecture.

The more traditional approaches based on information theory perform well but tend to deal poorly with noise. The main
advantages associated with this approach is that the rules are in a more understandable format and the technique is far more
computationally efficient.

The motivation behind the algorithm proposed in this paper is to exploit the advantages of the Neural Network approach
while maintaining a degree of computational efficiency by utilising ideas present in information theory.

The algorithm comprises two phases:

1. firstly, using ideas from information theory, select important attributes, and

2. secondly, apply a neural network to allow classification of tuples based on the attributes selected as being important.

More formally, given a set of n tuples with attributes , the information content of each of the n attributes
is calculated according to their ability to classify the tuples .
The attributes’ ability to classify the tuples is calculated by measuring the expected information via:

where is the total number of tuples, is the total number of values attribute can take and is the entropy of
the subset .

This entropy is calculated via:

where is the subset of tuples in which attribute has value , is the number of tuples belonging to class .

In the second phase, we attempt to classify the tuples using a subset of the attributes. This subset of attributes
comprises those with an information content above a threshold. We then consider the set as a whole thereby avoiding, to a
degree, the attribute independence assumption prevalent in traditional approaches.

A feed-forward network (as described earlier), using back-propagation as a learning algorithm, is used to classify the
tuples based on the attributes .

5 Results

5.1 The German Credit Data Set

In order to facilitate testing of the developed approach, experiments were conducted using the german credit data set 1.
The german credit data set contains information on 1000 loan applicants. Each applicant is described by a set of 20

different attributes. Of these 20 attributes, seventeen attributes are discrete while three are continuous. To facilitate feature
selection and neural network training in the later phase, the values of the three continuous attributes were discretised. Each
of the three attributes was discretised by dividing its range into subintervals.

A classification assigned to each of the applicants determines whether an applicant is a good or bad credit risk. Thus the
problem is to classify each pattern as either good or bad. In the data set, there are a total of 700 cases of good applicants and
300 cases of bad applicants. Furthermore, the data set is divided into a training set and a test set. The training set consists of
666 tuples and the test set contains 334 tuples.

Using the feature selection algorithm outlined, of the original 20 attributes describing each pattern in the german dataset,
7 were selected. In Table 1, we list the information gains , normalised gains and their averages for the german credit
problem. Those attributes deemed selectable are: status, duration, credit history, credit amount, savings, housing and foreign
worker.

5.2 Learning with Feature Selection

In the second phase, the number of units in the input layer of the neural network was determined. The thermometer coding
scheme was employed to get the binary representations of the attribute values for inputs to the neural network. Hence for
attribute status, a value of less-200DM was coded as 001 , a value of over-200DM was coded as 011 , and a value of
no-account was coded as 111 . Zero status (0DM) was coded by all zero values for the three inputs. The second attribute
duration was similarly coded. For example, a duration value less than 20 months was coded as 0001 , a duration value in
the interval [20,40] was coded as 0011 , etc. The coding scheme for the other attributes are given in Table 2.

With this coding scheme, we have a total of 25 binary inputs. Two nodes were used at the output layer. The target output
of the network was 1,0 if the tuple belonged to class good, and 0,1 if the tuple belonged to class bad. The number of
hidden nodes in the network was initially set as three. Thus, there were a total of 81 links in the network. The weights for
these links were given initial values that were randomly generated in the interval .

It is useful to look at error profiles as a function of iteration to gain insight into the convergence. Figure 1 illustrates the
convergence behaviour during a typical training phase for a network constructed with only selected attributes.

The network was then trained until a local minimum point of the mean squared error function had been reached. In
Figure 1, we can observe that the error curve reaches a local minimum point of the mean squared error function in the
interval . Through experiment, a network constructed using only selected attributes generally tends to reach a
local minimum point of the mean squared error function in the interval epochs.

The end result of the above training phase was a fully connected trained network which achieved an accuracy of 78.53%
on the training data where classification accuracy is defined as,

1This data set is available publicly from the University of California-Irvine machine learning repository [7] via anonymous ftp to ics.uci.edu

No. Attribute

1. status 0.08166752 0.04533132
2. duration 0.01565728 0.01175013
3. credit history 0.03506461 0.02039325
4. purpose 0.02510743 0.00945620
5. credit amount 0.01835606 0.02097592
6. savings 0.04112237 0.02461317
7. employment duration 0.01262678 0.00581796
8. installment rate 0.00467093 0.00258875
9. personal status 0.00621573 0.00404868
10. debtors 0.00481950 0.00893288
11. residence 0.00117720 0.00064023
12. property 0.01892740 0.00971905
13. age 0.01454505 0.00788522
14. installment plans 0.00604603 0.00699498
15. housing 0.01267492 0.01136562
16. existing credits 0.00131140 0.00119170
17. job 0.00468588 0.00326961
18. liable people 0.00030049 0.00049862
19. telephone 0.00002599 0.00002691
20. foreign worker 0.00523591 0.02339419

AVERAGE 0.01551192 0.01094472

Table 1. Attribute gains of the german credit data set.

accuracy
number of tuples correctly classified

total number of tuples

The degree of error in this result can be attributed to two characteristics of the training data. In the first case, due to the
presence of noise, it is not possible to achieve 100% accuracy on training data for the german credit problem. There are al-
ways problems with real-world data. Noise in the data encompasses irrelevant, missing, incorrect, and contradictory data. In
general, noise in the data weakens the predictive capability of the features. The other possible factor is due to the imbalance
in the training set.

The end result of training is that we now have a network which will act as a classifier for applicants of unknown class. In
general, it will be the performance of the classifier on the test set, which does not participate in the training phase, that will be
the most salient. The network obtained from the training phase described above achieved a classification accuracy of 74.25%
on the test data.

5.3 Description of Results

In order to test the usefulness of the proposed approach, we present empirical analysis comparing the accuracy of networks
constructed with and without feature selection over the chosen test collection.

Twenty neural networks were constructed with the full set of twenty attributes and another twenty networks were con-
structed using only the seven selected attributes. Of the twenty networks constructed in each case, five networks had 1 hidden
unit, another five had 2 hidden units etc. Table 3 and Table 4 summarise the classification accuracies achieved by these
networks on both the training data and the test data of the german credit problem.

From these tables, we can observe that removing redundant attributes for the german credit problem increased slightly the
predictive accuracy of a neural network. For the german credit problem, the accuracy on the training data actually decreased

Attribute Input Number
status -
duration -
credit history -
credit amount -
savings -
housing -
foreign worker

Table 2. Binarisation of the attribute values

when 13 attributes were removed from the input data. However, the predictive accuracy was marginally higher with the
exclusion of the redundant attributes.

It is also worth noting that the average number of function/gradient evaluations is typically less when only seven attributes
are used. A network constructed with only selected attributes as input, tends to reach a minimum of its error function before
that of a neural network constructed with all attributes. In addition, the removal of irrelevant data through feature selection
results in a simpler network construction with fewer links. A simpler network architecture reduces the computational costs,
while a large network with many parameters may over-fit the training data and give a poor predictive accuracy on new data
not in the training set. Finally, a simpler network results in a faster training time. Thus a network constructed using only
those attributes which provide the most information for classification, can be said to be more computationally efficient than
a network which models all attributes.

We can also observe from both tables, that the accuracy of the constructed networks on the test data decreases as the
number of hidden nodes in the network increase. This emphasises the importance of limiting the number of hidden units in a
network.

6 Conclusion

In this paper we presented an approach to the classification problem which combines feature selection (based on informa-
tion theoretic approaches to identifying useful attributes) with neural networks. We outlined the motivations behind adopting
such an approach—namely the high accuracy to be obtained using neural networks, its robustness to noise and its increased
computational tractability given the reduced number of attributes over which the network is trained. We also presented results
to show the validity of such an approach.

Given the reduced number of attributes selected, it is feasible that the task of rule extraction from the resulting neural
network is simplified. A useful extension would be to investigate pruning algorithms to simplify the network further and then
extract classification rules.

Future proposed work includes further experimentation with the number of features selected.

Units Links Acc. on train set (%) Acc. on test set (%)
Ave. Std. Dev. Ave. Std. Dev.

1 27 77.83 0.23 75.85 0.35
2 54 77.58 1.02 74.45 0.46
3 81 78.88 1.36 74.45 1.65
4 108 80.38 1.09 73.15 0.46

Table 3. Results from the german credit problem with 7 selected attributes used as input

Units Links Acc. on train set (%) Acc. on test set (%)
Ave. Std. Dev. Ave. Std. Dev.

1 74 85.99 0.31 72.66 1.13
2 148 86.49 1.48 72.36 2.21
3 222 88.19 2.34 72.36 0.17
4 296 92.69 0.75 71.46 1.75

Table 4. Results from the german credit problem with all 20 attributes used as input

References

[1] C. Aggrawal and P. S. Yu. Data mining techniques for associations, clustering and classification. In Proceedings of the 3rd Pacific-Asia
Conference on Methodologies for Knowledge Discovery and Data Mining (PAKDD-99), 1999.

[2] T. Cover. Elements of Information Theory. Wiley, 1991.
[3] W. Frawley, G. Piatetsky-Shapiro, and C. Matheus. Knowledge discovery in databases: An overview. AI Magazine, pages 213–228,

1992.
[4] M. M. J. Shafer, R. Agrawal. Sprint: A scalable parallel classifier for data mining. In Proceedings of the 22nd VLDB Conference,

1996.
[5] H. Lu, R. Setiono, and H. Liu. Neurorule: A connectionist approach to data mining. In Proceedings of the 21st VLDB Conference,

pages 478–489, 1995.
[6] G. Luger and W. Stubblefield. Artificial Intelligence. The Benjamin/Cummings Publishing Co., Inc., 1993.
[7] P. Murphy and D. Aha. UCI Repository of Machine Learning Databases. Department of Information and Computer Science, University

of California, Irvine, CA, 1994.
[8] J. Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986.
[9] C. Shannon. A mathematical theory of communication. Bell Systems Technical Journal, 27:379–423, 623–656, 1948.

RISK CREDIT HISTORY DEBT COLLATERAL INCOME

high bad high none $0 to $15k
high unknown high none $15 to $35k

moderate unknown low none $15 to $35k
high unknown low none $0 to $15k
low unknown low none over $35k
low unknown low adequate over $35k
high bad low none $0 to $15k

moderate bad low adequate over $35k
low good low none over $35k
low good high adequate over $35k
high good high none $0 to $15k

moderate good high none $15 to $35k
low good high none over $35k
high bad high none $15 to $35k

Table 5. Data from credit history of loan applications

Figure 1. Back-propagation convergence curve for neural network constructed using only selected attributes.

