
DEPARTMENT OF INFORMATION TECHNOLOGY

te
hni
al report NUIG-IT-150601Geneti
 Algorithms, their Operators and theNK ModelS. Hill (NUI, Galway)C. O'Riordan (NUI, Galway)

itreports�nuigalway.ie http://www.it.nuigalway.ie/

Genetic Algorithms,
their Operators and the NK Model

Seamus Hill and Colm O’ Riordan,
Department of Information Technology, Galway,

Galway.

Abstract

This paper outlines the operators and workings of Ge-
netic Algorithms, and Kauffman’s NK model. To analyse the
performance of genetic algorithms and their operators the
fitness landscape is crucial. A discussion on fitness land-
scape is included, which paves the way for Kauffman’s NK
model to analyse to performance of genetic algorithms and
their operators. Future work which may extend from this
could include using the NK model to analyse the perfor-
mance of the inversion operator.

1 Introduction

The bookAdaptation in Natural and Artificial Systems
written by John Holland, presented Genetic Algorithms
(GA’s) as an abstraction of biological evolution and presents
a theoretical framework, which can be adopted for GA’s[8].
For Holland, the GA is a method of moving from one pop-
ulation of bit strings which represent creatures or possible
solutions to a problem, to a new population, using selec-
tion along with crossover, mutation and inversion opera-
tors. Given an optimisation problem, the set of possible
solutions to this problem can be encoded using strings of a
fixed length formed from some finite size alphabet. This en-
coding generates a representation space, which is a high di-
mensional space of all possible strings of a particular length,
each of which encodes a possible solution to the problem.
The effect of the choice of operators to use and their asso-
ciated rate has been a topic of much debate and research.

To develop a theory regarding the choice of specific ge-
netic operators (i.e. the inversion operator) to include in a
GA and the rate at which they should be set, a model such
as Kauffman’s NK model can be used to analyse their per-
formance. This is because the structure of a fitness land-
scape depends on the underlying problem, and developing
a theory about operators and their probability rates should
be independent of the structure of the landscape. To this

end, Kauffman’s NK model provides a problem indepen-
dent landscape, as the fitness landscape can be gradually
turned from smooth to rugged.

2 An Overview of Genetic Algorithms

Genetic Algorithms (GAs) are search algorithms based
on the mechanics of natural selection and natural genet-
ics. They are a combination of survival of the fittest among
string structures, and a structured yet randomised informa-
tion exchange to form a search algorithm which has human-
like search qualities. With each generation, a new set of
artificial creatures (strings) are created using parts of the
fittest of the old, combined with some new parts. Although
randomised, genetic algorithms efficiently exploit histori-
cal information to speculate simple search points with ex-
pected improved performance. GA’s can be classified as a
group of computational models inspired by natural evolu-
tion. A potential solution to a particular problem is encoded
on a data structure similar to a chromosome. Each chromo-
some consists of a number of “genes” (e.g. bits), with each
gene being an instance of a particular “allele” (e.g., 0 or 1).
Recombination operators are applied to this binary string
so as to preserve critical information. A GA commences
with a population of typically randomly generated chromo-
somes. The selection operator chooses which chromosomes
in the population will be allowed to reproduce. The chro-
mosomes are allocated reproductive opportunities in a way
that chromosomes which represent a better solution to the
target population are given a higher chance to “reproduce”
than those chromosomes which have achieved lower fitness
evaluations. It also decides how many offspring each chro-
mosome can have, with fitter chromosomes having a greater
chance to produce more offspring. The fitness of a solution
is typically defined with respect to the current population.

Following selection the crossover operator exchanges
subparts of two chromosomes, normally with a proba-
bility rate typically between 85% and 90%, this can be

1

compared to biological recombination between two single-
chromosome organisms, and may be viewed as sexual re-
combination found in nature. The crossover operator ran-
domly chooses a locus and exchanges the parts of the strings
before and after that locus between two chromosomes to
create two offspring. For example, the strings10000100
and11111111 could be crossed over after the third lo-
cus in each to produce the two offspring10011111 and
11100100. The mutation operator changes randomly the
values of a location on the chromosome. It randomly flips
some of the bits in a chromosome. For example, the string
00000100might be mutated in its second position to yield
01000100. Mutation can occur at each bit position in a
string with some probability, usually very small (e.g., 0.001)
[16]. The order in which genes are arrayed in the chromo-
some can be rearranged by the inversion operator, which
reverses the order of a contiguous section the chromosome
[17]. Most methods called “GAs” have the following ele-
ments in common: populations of chromosomes, selection
according to fitness, crossover to produce new offspring,
and random mutation of new offspring.

3 Understanding Genetic Algorithms

Holland puts forward theschema theoremto explain how
a GA can result in a complex and robust search by implic-
itly sampling hyperplane partitions of a search space [5]. A
Schema is a collection of gene values which may be rep-
resented (in a binary coding) by a string of characters con-
tained within the alphabet 0, 1, *. A chromosome contains
a particular schema if it matches that schemata, with the “*”
symbol matching anything. For example, the chromosome
“1010” contains many schemata including “10**”, “*0*0”,
“**1*” and “101*”. The order of a schema is the number
of non-*’s it contains (2,2,1,3 respectively in the above ex-
amples). The defining length of a schema is calculated by
the distance between the outermost non-* symbol (2,3,1,3
respectively).

The schema theorem explains the power of a GA in terms
of how schemata are processed. Members of the population
are individually given the chance to reproduce, and create
offspring. The number of chances a individual receives is
directly related to that individuals fitness, therefore fitter in-
dividuals contribute more of their genes to the next genera-
tion. It is assumed that a creatures high fitness is due to the
fact that it contains good schemata. By passing more good
schemata to the next generation the liklihood of finding a
better solution is increased. Holland showed that the opti-
mum way to explore the search space is to allocate repro-
ductive opportunities to creatures in proportion to their fit-
ness relative to the other creatures in the population. By do-

ing this good schemata receive an exponentially increasing
number of chances to reproduce in successive generations.
Holland also showed that as each creature contains many
different schemata, the number of schemata effectively be-
ing processed in each generation is of the ordern3 (n being
the population size), this property is calledimplicit paral-
lelism[2].

Goldberg [6] argues that the power of a GA lies in being
able to find goodbuilding blocks. These building blocks
are schemata of short defining length consisting of bits that
work well together, and tend to improve performance when
incorporated into a creature. A successful coding scheme
encourages building blocks to form by ensuring that, (I) re-
lated genes are close together on the chromosome, while
(II) there is little interaction between genes.Interaction
(also calledepistasis) between genes means that the contri-
bution of a gene to the fitness depends on the fitness of other
genes in the chromosome. GA researchers use the term
epistasis to refer to any kind of strong interaction among
genes. There is always some epistasis between genes in
multi-modal fitness functions. Multi-modal functions are
important in GA research because unimodal functions can
be solved using simpler methods. If (I) and (II) above are
observed them GA’s will be as effective as predicted by the
schema theorem. However genes may be related in ways
which do not allow all closely related to be situated close
together in a one-dimensional string, also the programmer
may not know the exact relationship between the genes
which, may prevent the coding scheme form being imple-
mented as successfully as possible. The condition that there
is little interaction between genes is a precondition for the
condition that related genes are close together on the chro-
mosome. Suppose the contribution to overall fitness of each
gene were independent of all other genes, then it may be
possible to solve the problem by hill-climbing on each gene
in turn. But generally this is not possible. If the program-
mer can ensure that each gene interacts with a small number
of other genes and these can be placed on the chromosome,
then both (I) and (II) can be adhered to. If on the other
hand there is a lot of interaction between genes then neither
condition can be met. All this implies that when designing
the code schemes we should try to conform with Goldberg’s
building block hypothesis so as to ensure that the GA will
perform as well as possible.

4 Operators

4.1 Operator overview

Reproduction combined with Crossover provide GA’s
with the bulk of their processing power. Mutation on the

2

other hand plays a secondary role in the operation of genetic
algorithms. It is needed because, “even though reproduction
and crossover effectively search and recombine extant no-
tions, occasionally they may become overzealous and loose
some potentially useful genetic material (1’s or 0’s at par-
ticular locations). In artificial genetic systems, the mutation
operator protects against such an irrecoverable loss. By it-
self, mutation is a random walk through the string space.
When used sparingly with reproduction and crossover, it is
an insurance policy against premature loss of important no-
tions”. Goldberg notes that the frequency of mutation to
obtain good results in empirical GA studies is “on the order
of one mutation per thousand bit (position) transfers”.

4.2 Crossover Operator

The traditional GA uses 1-point crossover, where two
mating chromosomes are each cut once at corresponding
points, and the segments following the cuts are exchanged
[1]. Crossover is the predominant operation in genetic al-
gorithm work and is performed with a high probability
(say, 85% to 90%) [16]. There are however many different
crossover algorithms which have been devised, these often
include more than one cut point. The problem with adding
additional crossover points is that it will increase the likely
hood of building blocks being disrupted. This being said,
an advantage of having additional building blocks is that
the problem space may be searched more thoroughly.

In a 2-point crossover and multi-point crossover in gen-
eral, chromosomes are seen as loops formed by joining the
ends together, rather than as linear strings. To crossover a
section from one loop to another requires two cut points
to be chosen. When viewed as a loop 1-point crossover
can be seen as 2-point crossover with one of the cut points
fixed at the start of the string. Thus 2-point crossover per-
forms the same task as 1-point crossover, but it is more gen-
eral. A chromosome viewed as a loop is able to contain
more building blocks as they are able to wrap around at
the end of the string. Researchers now agree that 2-point
crossover produces better results than 1-point crossover [2].
However, if a strict interpretation of the schema theorem is
imposed then operators which use many crossover points
should be avoided because they can cause extreme disrup-
tion to schemata [5]. A completely different crossover from
the 1-point crossover is theUniform Crossover. Each gene
in the offspring is created by copying the corresponding
gene from one of the parents, chosen according to a ran-
domly generatedcrossover mask. Where a 1 exists in the
crossover mask, the gene is copied from the first parent,
and where a 0 exists in the mask the corresponding gene is
copied from the second parent. The same process is carried

out again to produce a second offspring.

The choice of which crossover operator is the most ef-
ficient is still being debated. Syswerda [18] argues that
the uniform crossover is superior, claiming that “under uni-
form crossover, schemata of a particular order are equally
likely to be disrupted, irrespective of their defining lengths”.
If a 2-point crossover is used, it is the defining length of
the schemata, not its order, which determines its likeli-
hood of disruption. What this means is that under uniform
crossover, although short defining lengths run the increased
risk of being disrupted, longer defining length schemata are
comparatively less likely to be disrupted [1]. Syswerda
claims that therefore the total amount of schemata distri-
bution is lower. Uniform crossover has the advantage that
the ordering of genes is irrelevant. This implies that order-
ing operators such as inversion are not required, as there is
no need to worry about positioning genes so as to promote
building blocks. However Spears & DeJong [14] are crit-
ical of multi-point and uniform crossover. They adhere to
the traditional analysis, which illustrates that 1- and 2- point
crossover are optimal. They argue that 2-point will perform
poorly when the population has to a large extent converged,
due to reducedcrossover productivity(the ability of the
crossover operator to produce offspring which sample dif-
ferent points in the search space). Where two chromosomes
are similar, the sections exchanged by 2-point crossover are
likely to be identical, which will lead to offspring identi-
cal to their parents. There is a reduced chance of this hap-
pening with uniform crossover. Spears & DeJong then de-
scribe a new 2-point crossover operator such that if identical
offspring are produced, two new cross points will be cho-
sen. This operator was then tested and proved marginally
better than the uniform crossover on a test problem. It is
also stated that Booker [3] introduced areduced surrogate
crossoverto achieve the same effect. Spears & DeJong con-
cluded in later papers that modified 2-point crossover is bet-
ter for large populations, but the increased disruption of uni-
form crossover is more beneficial for problems with small
population sizes [1].

The original analysis of GA’s present combination to
be the primary mechanism of crossover. However, al-
though good solutions can be found they are not always
locally optimal. A popular technique is to locally opti-
mise each crossover solution before adding it to the pop-
ulation. Within these “hybrid” operators, crossover can be
viewed as a means of restarting the local optimiser. How-
ever, if crossover does little more than combine random
parts of two parent solutions, the performance of the re-
sulting hybrid operator may not be significantly different
from random restart of the local optimiser. The design of
the crossover affects the efficiency and effectiveness of hy-

3

brid operators.

The traditional design focus for crossover operators has
been combination - random parts (schemata) from both
parents are crossed into an offspring solution. This de-
sign basis is a legacy of the original Schemata Theorem.
The focus is on implicit parallelism and the idea of sam-
pling of schemata, particularly low-order schemata (build-
ing blocks). But the original analysis of crossover was
based on a standard representation, which uses the view-
point of a single parent, and is pre-occupied with disrup-
tion. Non-standard representations and hybrid operators
were never intended extensions of the original design fo-
cus of combination. Research carried out by Chen & Smith
[4], developed a new Schema Theorem, “the analysis of
crossover is representation independent, and uses the view
point of both parents and ignores disruption. The new
Schema Theorem suggests that common schemata are im-
portant. Instead of combining random schemata a common
schemata of two parents are used as a foundation on which
a new offspring is built”. Expressly a new two step process
is defined for crossover. First, “preserve the maximal com-
mon schema of two parents”, and second, “complete the so-
lution within a constructive heuristic”. The scope of Chen
& Smiths design framework extends to non-standard repre-
sentations and hybrid operators. The results of this research
have shown that the defining attribute of a genetic opera-
tor should be crossover. A well designed crossover operator
can improve the performance of a local optimiser. The au-
thors believe that this re-establishes the role for crossover
in hybrid operators, and that the overall search method can
again be called a genetic algorithm.

4.3 Selection Operator

For each fitness problem a fitness function must be de-
vised. Given a particular chromosome, the fitness function
returns a numeric “fitness” value which is supposed to be
proportional to the ability of the individual creature which
that chromosome represents. For functional optimisation
problems the fitness function should measure the value of
the function. However this is not as obvious for many prob-
lems i.e. combinatorial optimisation. Along with the coding
scheme adopted, the fitness function is the most crucial as-
pect of a GA. Ideally what is required is a smooth, regular
fitness function so that the chromosomes with reasonable
fitness are close (in parameter space) to chromosomes with
slightly better fitness. However for many it is not possible
to construct ideal fitness functions, otherwise hill-climbing
algorithms could be used. This aside fitness functions need
to be constructed which do not have too many local max-
ima or very isolated global maxima, if the GA is to perform

well. The general rule in constructing a fitness function is
that it should reflect in some “true” way the value of the
chromosome. However the “true” value of a chromosome
may not always be a useful for guiding genetic search. With
combinatorial optimisation problems, where there are many
constraints, most points in the search space often represent
invalid chromosomes, hence having a zero “true” value.

Take a timetabling problem for example, to construct a
school timetable a number of classes need to be given a
number of lessons. There are a finite number of rooms and
lecturers available. Most allocations of classes and lectur-
ers to rooms will violate constraints such as a room being
occupied by two classes at once, a class or lecturer being
in two places at once, or a class not being timetabled for
all the lessons it is supposed to receive. For a GA to oper-
ate successfully a fitness function needs to be created where
the fitness of an individual chromosome is seen in terms of
how it is leading us towards valid chromosomes. This is in
fact a sort of catch-22 situation, it should be known where
the valid chromosomes are to ensure that the nearby points
can also be given a good fitness values, and far away points
given poor fitness values, but if it is not known where the
valid chromosomes are this cannot be achieved. It has been
suggested by Cramer [12] that if the goal of the problem
is all or nothing, better results can be obtained if meaning-
ful sub-goals are invented. These sub-goals should then be
rewarded. For example with the timetabling problem a re-
ward could be given for the classes which had its lessons
allocated validly. Another approach which can been taken
in this situation is to use a penalty function, which repre-
sents how poor the chromosome is and construct the fitness
as (constant minus penalty) [6]. A number of guidelines for
constructing penalty functions have been produced, these
include fitness functions whereby penalties which represent
the amount by which the constraints are violated are con-
sidered better than those which are based on the number of
constraints which are violated. Good penalty functions can
be constructed from the expected completion cost. In other
words, given another invalid chromosome, how much will
it“cost” to turn it into a valid one? [2].

If the fitness function is excessively slow or complex to
evaluate a technique known asApproximate function eval-
uation may be used. If a much faster function can be de-
vised which approximately gives the value of the“correct”
fitness function, the GA may find a fitter chromosome in a
given amount of CPU time than when using the ”correct”
fitness function. For example if the simplified function is
ten times faster, ten times as many function evaluations can
be performed in the same amount of time. An approximate
evaluation of ten points in the search space is normally bet-
ter than an exact evaluation of one [2]. A GA is considered

4

robust enough to be able to converge in spite of the noise in-
troduced by the approximation. Approximate fitness func-
tions have been used in instances where the fitness function
is stochastic [6].

4.4 Mutation

Traditionally mutation is seen as a“background” opera-
tor responsible for re-introducing mistakenly lost gene val-
ues (alleles), preventing genetic drift, and providing a small
element of random search in the area of the population when
it is has largely converged. It is normally held that crossover
is the main force leading to a methodical search of the prob-
lem space. However, examples in nature show that asex-
ual reproduction can evolve sophisticated creatures without
crossover [1]. Tate and Smith [19] argue that the optimal
mutation rates depend strongly on the choice of encoding,
and that problems requiring non-binary encoding may ben-
efit from mutation rates much higher than those generally
used with binary encodings. The authors introduce the idea
of the expected allele coverage of a population and discuss
its role in guiding the choice of mutation rate and population
size. Many biologists see mutation as the main source of
raw material for evolutionary changes. This theory moves
away from the traditional view that low mutation rates are
used in GA’s as they tend to lead to an efficient search of
the solution, and that high mutation rates result in diffu-
sion of search effort and premature extinction of favourable
schemata in a population. The article begins by outlining
the traditional role of mutation as formulated by Goldberg
(discussed above). Following this the authors show that this
characterisation is sensitive to the complexity of the encod-
ing, they introduce the concept ofexpected allele coverage
as a measure of the degree to which exploratory mutation is
or is not necessary. They then argue that certain classes of
optimisation problems require encodings with low expected
allele coverage, and thus low mutation implementations are
not always ideal.

Two general comments on mutation are criticised by the
article. The first is Goldberg’s view that mutation is nothing
more than a random walk through string space. The authors
see this as being valid only when mutation is applieduni-
formlyover the population, without regard to fitness. Selec-
tion pressures act on individuals without regard to whether
their phenotypes are the result of breeding or mutation. The
second traditional view is that mutation, if not used spar-
ingly, is destructive. But in a steady state GA, where the ma-
jority of the population persists unchanged from one gener-
ation to the next, this, the authors believe may not be a prob-
lem. Also the danger of eliminating desirable schemata is
reduced significantly if you allow the possibility that both

a mutant encoding and the individual which gave rise to
it might survive into future generations. This allowed the
possibility of mutation as a local search mechanism in the
neighbourhood of highly fit solutions, without the danger of
eliminating the highly fit solutions during the process.

Mutation, which is primarily useful for retrieving valu-
able schemata implies the belief that the mutation rate ought
to be set so that the rate at which highly fit schemata are
accidentally deleted from the population is roughly equal
to the rate at which mutations introduce new desirable
schemata. Implied in this view is that it is assumed there
is no need to find highly fit schemata that are not present
in the initial population, or that cannot be generated from
that population by repeated breeding operations. Put an-
other way, this view assumes that nearly all the useful gene
alleles are present in the initial population. The authors have
concluded that for simple string encoded GA’s low mutation
rates are sufficient. This is because of the high expected
allele coverage exhibited by random populations of binary
strings. More complex encodings on the other hand exhibit
lower expected coverage. This can be adjusted for, to some
degree, using non-random initial populations, but a more ef-
ficient way of coping with lower coverage is to use higher
mutation rates. In order to achieve these higher mutation
rates without degenerating into simple random search, it is
useful to close off mutation and breeding into separate, par-
allel processes. The relative frequency of breeding and mu-
tation can be controlled exactly in this manner, without al-
lowing the researcher to search randomly for highly-fit but
previously unseen allele values through the breeding of un-
mutated offspring. The authors also point out that it is use-
ful in such cases to use steady-state GA implementation in
which highly fit solutions can persist from one generation to
the next , even while generating mutants, and poor solutions
are culled from the population.

4.5 Inversion and Reordering

The order of genes on a chromosome is critical for the
building block hypothesis to work effectively. A number of
techniques for reordering the positions of genes in a chro-
mosome during run time have been suggested. One tech-
nique inversionworks by reversing the order of genes be-
tween two randomly chosen positions within the chromo-
some. If these techniques are being used then genes must
carry with them a sort of identification code so that they may
be correctly identified irrespective of their position within
the chromosome. It is pointed out that reordering greatly
expands the search space. By doing this not only is the GA
trying to locate a good set of gene values, it is simultane-
ously trying to discover good gene orderings too. This is a

5

far more difficult problem to solve. The computational time
spent looking for better gene ordering may mean time taken
away from finding good gene values. Beasley et al. [2] de-
scribe inversion as mechanism by which the arrangement
of the chromosome(s) may evolve, this is known askary-
otypic evolutionin nature. Generally inversion is imple-
mented by reversing a random segment of the chromosome.
However bits need to have a position independent decod-
ing before moving bits around to improve linkage. Without
position independent coding reversing segments of bits is
similar to large-scale mutation. Position independent cod-
ing requires that each bit be tagged in some way. Consider
the following example,((9 0)(6 0)(2 1)(7 1)(5
1)(8 1)(3 0)(1 0)(4 0)) the first number is the
bit tag which indexes the bit and the second represents the
bit value. The linkage can now be changed by moving the
tag-bit pairs around, but the string remains the same when
decoded(010010110).

The type of crossover in operation can have an influence
on an inversion operator, sometimes negatively. For exam-
ple, the purpose of reordering is an attempt to find gene
orderings, which have better evolutionary potential. How-
ever, reordering does nothing to lower the epistasis, there-
fore cannot help with the other requirement of the build-
ing block hypothesis. Also it cannot help if the relation-
ships among the genes do not allow a simple linear order-
ing. Therefore if a uniform crossover is in operation then
gene order is irrelevant, so as Syswerda [18] argues in this
case there is no need for inversion [1].

5 Problems With GA’s

There are several open problems associated with GA’s.
Many of these problems are of a technical nature (e.g. ques-
tions about genetic operators and their representations) and
others are more general and relate to many areas of artificial
life. This literature review is concerned with the questions,
which arise about genetic operators and their representa-
tions. Specifically to GA’s is the central question of rep-
resentation. For any problem domain, the choice of which
features to represent on the genotype and how to represent
them is crucial to the GA’s performance. The choice of fea-
tures which compromise the genotype is a decision which
has to be decided at the design stage and cannot be auto-
mated. GA’s typically use low level primitives such as bits,
which can be worlds away from the natural representation
of environmental states and control parameters. Because of
this the representation problem is especially important for
GA’s [17].

5.1 Representation Problem

Representation is a major issue for GA’s because GA’s
directly manipulate a coded representation of the problem,
and because the representation scheme can limit the win-
dow through which a system observes its world. Although
traditional GA’s operating on fixed-length character strings
are capable of solving a large number of problems, there are
a number of areas where they may not be suitable [11].

Within the field of GA’s efforts towards getting pro-
grams to learn to solve problems without being explicitly
programmed have focused on providing a greater level of
flexibility by using increasingly more complex representa-
tions. Although the representation problem has been recog-
nised there have been very few innovative representations,
notable exceptions being messy GA’s. Messy algorithms
were introduced by Goldberg, Korb and Deb in [7], which
processed populations of variable length character strings.
They solve problems by combining relatively short, well
tested sub-strings that deal with part of a problem to form
longer more complex strings that will deal with part of a
problem to form longer, more complex strings that will deal
with more complex aspects of the problem. Also domain-
specific structures that are more complex than character
strings have been devised and applied to many combinato-
rial optimisation problems such as the Travelling Salesman
Problem (TSP). For the TSP the crossover operation has
been modified in an application-specific way to either; first,
maintain“syntactic legality while preserving the building
blocks relevant to the particular application”. and second,
”to repair syntactic illegality while preserving the building
blocks relevant to the application, or third to compensate for
syntactic illegality in some manner appropriate to the appli-
cation” [11].

5.2 Choice of Operators

Representation issues tend to address the question of
how to engineer GA’s. Related to representation issues is
the choice of genetic operators for introducing variation into
a population. One reason that binary linearly ordered rep-
resentations are frequently used is that standard Mutation
and Crossover operators can be applied in a problem in-
dependent way. Other operators have been experimented
with for various optimisation problems, but so far no new
general-purpose operators have been widely adopted since
the advent of GA’s. The opposite in fact is true, the Inver-
sion operator, which was included originally for theoretical
reasons, has to a large extent been abandoned. It has been
suggested that perhaps that more research should be carried
out on this operator [17].

6

New versions of the Crossover operator have also been
developed such as the Uniform Crossover. This can reduce
the inherent bias in standard crossover of breaking up cor-
related genes that are widely separated on the chromosome,
known as“positional bias”. These approaches are viewed as
promising in some cases, especially since the strong posi-
tional dependence of most current representations is an ar-
tifact introduced by GA’s. ”In natural genetic systems, one
gene (approximately) codes for the one protein regardless
of where it is located, although the expression of a gene
(when the protein is synthesised) is indirectly controlled by
its location”. In spite of this, most current GA implementa-
tions use a simple binary alphabet linearly ordered along a
haploid string. Researchers interested in engineering appli-
cations have believed that the use of ”high-cordiality alpha-
bets” including real numbers as alleles should be advocated
[17].

6 The Fitness Landscape

6.1 Bit strings and Hamming distance

To describe fitness landscapes, a notion of a distance be-
tween genotypes is needed. Genotypes are codings, and dif-
ferent codings can cause different distance measures. An-
other point is that often there are more than one distance
measure, or metric, which can be defined for one and the
same coding. Usually, a coding in the form of bit strings is
used. The Hamming distance between two bit strings is de-
fined as the number of corresponding positions in these bit
strings where the bits have a different value. So, the distance
between 010 and 100 is two, because the first and second
positions have different values. A normalised Hamming
distance can be defined by dividing the Hamming distance
between two bit strings by the length of these bit strings. By
adopting this approach, the distance measure is independent
of the length of the bit strings. A normalised Hamming dis-
tance of 0.5, for example, means that half the bits of two
bits string have a different value [9].

6.2 The Genotype Space

If the possible solutions for a given problem are encoded
by some form of genotype, then the problem space can also
be represented by a genotype space. A genotype space is the
space in which each point represents one genotype and is
next to all other points that have a distance of one from this
point (according to some appropriate metric i.e. the Ham-
ming distance). All the points at distance one are called
the neighbours of this first point, and together they form

a neighbourhood, i.e. consider as genotypes bit strings of
length 3. The total number of bit strings of this length is23
= 8. With the Hamming distance as metric, every bit string
of length three has exactly three neighbours, namely those
bit strings that differ in one of the three bits. Every point
in the space represents one genotype and has exactly three
neighbours, each of which differs in the value of one bit [9].

6.3 The Fitness Landscape

Shortly after the first mathematical models of Darwinian
evolution were developed, Seawall Wright (1932) recog-
nised a deep property of population genetic dynamics, that
is when fitness interactions between genes, the genetic com-
position of a population can evolve into multiple domains of
attraction. The specific fitness interaction is known asepis-
tasis, where the effect on fitness from altering one gene de-
pends on the allelic state of other genes. Epistasis makes it
possible for the population to evolve toward different com-
binations of alleles, depending on its initial genetic combi-
nation. Thus Wright discovered a conceptual link between
a microscopic property of organisms (fitness interactions
between genes) and a macroscopic property of evolution-
ary dynamics (multiple population attractors in the space of
genotypes. Wright illustrated this by using the metaphor
of a landscape of multiple peaks, in which a population
would evolve by moving up hill until it reached its local
fitness peak. This visualisation of theadaptive landscape
is the term used to describe multiple domains of attrac-
tion in evolutionary dynamics. Wright looked specifically
at how populations could get away from local fitness peaks
to higher ones through stochastic fluctuations in small pop-
ulation subdivisions. This was one of the first conceptions
of stochastic processes for the optimisation of multi-modal
functions [13].

The idea of a fitness landscape is used as a framework
for thinking about evolution. Biological organisms can be
characterised by their genotype, which is the genetic “en-
coding” of the organism, or their phenotype, which is the
actual form and behaviour of the organism. A fitness value
can be assigned to each phenotype, which denotes its abil-
ity to survive and reproduce. Evolution can be viewed
as a process that searches, by means of genetic operators
like crossover and mutation, a fitness landscape of possi-
ble genotypes, looking for genotypes that encode highly fit
phenotypes. Put another way, evolution searches for solu-
tions, encoded in genotypes, for the problem of finding fit
organisms that are capable of reproduction. Every genotype
will have a relative fitness assigned to it. This is determined
by a fitness function. The fitness landscape is then con-
structed by assigning the fitness values of the genotypes to

7

the corresponding points in the genotype space. To visualise
this picture each point in the genotype space being given a
“height” according to its fitness. From this way a “moun-
tainous” landscape is formed, where the highest peaks des-
ignate the best solutions. A local optimum, or peak, in such
a landscape is defined as a point that has a higher fitness
than all its neighbours [10].

This landscape paradigm can be used to describe search
in general. Given an optimisation problem, the set of pos-
sible solutions to this problem can be encoded using strings
of a (normally) fixed length formed from some finite size
alphabet. This encoding generates a representation space,
which is a high dimensional space of all possible strings of
a particular length, each of which encodes a possible so-
lution to the problem. In addition, there is a neighbour-
hood relation that defines which points in the representation
space are associated. This relation usually depends on the
specific search operator i.e. mutation, or combination of
search operators, i.e. crossover and mutation, that are used
to search the space. That is to say, points that are reachable
from each other by one application of the search operator
are connected. Finally, there is a fitness function, which as-
signs a fitness value to each possible word, or point in the
landscape. This fitness value can be seen as a measure of
how good a solution, represented by that point in the land-
scape, is to the given problem. Therefore we can conclude
that a fitness landscape is defined by three things: A rep-
resentation space (i.e. all the possible strings in the encod-
ing). A neighbourhood relation denoting, which points in
the representation space are neighbours. And finally a fit-
ness function that assigns a fitness value to each point in the
space [10].

These give rise to the mountainous landscape, with the
fitness of each point being represented by its height. Opti-
misation, i.e. finding good solutions to a problem, is now
a search of this landscape, looking for the highest peaks,
which mean the best solutions. Different landscapes differ
in their ruggedness. A landscape with a few local peaks
and small (average) fitness differences between neighbour-
ing points is called smooth. A landscape with a lot of local
peaks and large fitness differences is called rugged. The
more rugged a landscape is, the harder it will be to search
on it for the best solutions, and the less information there
will be about the fitness of distant points in the landscape.
The fitness landscape metaphor can help in understanding
evolutionary processes or search processes in general. Fur-
thermore, the above definition of a fitness landscape lends
itself to mathematical analysis, also the structure of a land-
scape can reflect how easy or difficult it is for a search algo-
rithm to find good solutions.

To summarise, the structure of a landscape incorporates
many things, like the number of neighbours each point in
the genotype space has, the number of peaks, the “steep-
ness” of the hillsides, the relative height of the peaks, etc.
A landscape where the average difference in fitness between
neighbouring points is relatively small, is called smooth. On
such a landscape it will be easy to find good optima as local
information about the landscape can be used effectively to
direct the search. A landscape with a relatively large aver-
age fitness difference between neighbours, is called rugged.
On such a landscape it will be difficult to find good op-
tima, in other words local information becomes less valu-
able. So, the global structure of a landscape can range
from very smooth to very rugged. The structure of a fit-
ness landscape depends on the underlying problem. But a
theory about population flow should be independent of that.
It would therefore be convenient to have a problem inde-
pendent fitness landscape [9].

7 NK Model

7.1 Description of the NK Fitness Model

”We need a real theory relating the struc-
ture of rugged multipeaked fitness landscapes
to the flow of a population upon those land-
scapes. We do not yet have such a theory.”

—Stuart A. Kauffman

Stuart Kauffman devised the“NK fitness Landscape”
model to explore the way that epistasis controls the
”ruggedness” of a adaptive landscape. He wanted to spec-
ify a family of fitness functions whose ruggedness could
be ‘turned’ by a single parameter. This was achieved by
building up multiple ‘atoms’ of maximal epistasis. The NK
model is a stochastic method for generating a fitness func-
tion F:f0,1gN ! R+ on binary stringsx 2 f0; 1gN , where
the genotypex consists of N loci, with two possible alleles
at each locusxi. It has two basic components: a structure
for gene interactions, and a way this structure is used to
generate a fitness function for all possible genotypes. The
gene interaction structure is created as follows: the geno-
type’s fitness is the average of N fitness components con-
tributed by each locus. Each gene’s fitness componentFi
is determined by its own allele,xi, and also the alleles at
K other epistatic loci (therefore K must fall between 0 and
N - 1). These K other loci could be chosen in any number
of ways from the N loci in the genotype. Kauffman investi-
gated two different alternatives:adjacent neighbourhoods,
where the K genes nearest to locus i on the chromosome are
chosen; andrandom neighbourhoods, where these K other

8

loci are chosen randomly on the chromosome. In the ad-
jacent neighbourhood model, the chromosome is taken to
have periodic boundaries, so that the neighbourhood wraps
around the other end when it is near the terminus [13].

Epistasis is implemented through a“House of Cards”
model of fitness effects, in other words, whenever an allele
is changed at one locus, all of the fitness components with
which the locus interacts are changed, without any correla-
tion to their previous values. Thus a mutation in any of the
genes affecting a particular fitness component is like pulling
a card out of a house of cards - it tumbles down and must be
rebuilt from scratch, with no information passed on from the
previous value. Kauffman implemented this by generating,
for each fitness component, a table of2K+1 numbers for
each allelic combination for the K + 1 loci determining that
fitness component. These numbers are independently sam-
pled from a uniform distribution on (0,1). The consequence
of this individual resampling of fitness components is that
the fitness function develops conflicting constraints: a mu-
tation at one gene may improve its own fitness component,
but decreases the fitness component of another gene with
which it interacts. Also, if the allele at another interacting
locus changes, an allele that had been optimal, given the al-
leles at the other loci, may no longer be optimal. Therefore,
epistatis interactions provide ”frustration” in trying to opti-
mise all genes simultaneously[13].

The NKmodel was introduced by Kauffman to have a
problemindependent model for constructing fitness land-
scapes that can gradually be tuned from smooth to rugged.
The main parameters of the model are N, the number of
genes in the genotype, i.e. the length of the strings that
form the points in the landscape, and K, the number of other
genes that epistatically influence a particular gene (i.e., the
fitness contribution of each gene is determined by the gene
itself plus K other genes) [9]. K sets the level of epista-
sis by determining the dependence the partial fitness of a
gene at location n has on the genes in a neighbourhood of
K other locations. The neighbourhood may be at the K lo-
cations nearest to n in the genotype or a set of K locations
randomly picked from anywhere on the genotype. Follow-
ing this a series of N lookup tables are then generated, one
for each gene location in the genotype. Each table has2K+1
random entries in the interval (0,1). The fitness,FNK , of a
particular genotype is calculated by the function:FNK = 1N NXn=1 f(x)

where the partial fitness f(n) is obtained from the nth
lookup table using the values of the genes in location n and
its neighbourhood as the lookup key [15]. Below is an ex-
ample to illustrated the calculation off(n) with N=8, K=2.

In this example n =011, when the table is referred tof(n)
is shown to be0.432809.

Genotype:

Neighbourhood
of n
| |

1 0 0 0 1 1 0 0

nth Lookup Table
0 0 0 0.724367
0 0 1 0.123989
0 1 0 0.987432
0 1 1 0.432809
1 0 0 0.987234
1 1 0 0.349566
1 1 0 0.274095
1 1 1 0.521926

Many experiments have used Kauffman’s NK model,
one such example is an experiment by Giles Mayley [15].
Mayley choose the Kauffman’s NK fitness Model because a
landscape was desired that provided many local optima for
search such that evolution could adopt a genetically fixed
solution at a lower maximum than one found by learning
is the costs of learning were too high, the NK model pro-
vided an arbitrary fitness landscape of specified rugged-
ness. Therefore the generalised NK model can be applied
to the representation problem in evolutionary computation,
i.e. how to represent the objects in the search space so that
genetic operators can have a good chance of producing fit-
ter variants when acting on the representation [13]. The NK
model can be used as an abstraction for the way representa-
tions produce epistatic interactions between genes.

8 Conclusion

8.1 Summary

GA’s are search algorithms based on the mechanics of
natural selection and natural genetics. A GA begins with a
randomly generated population. The selection operator se-
lects which chromosomes in the population will reproduce.

9

The chromosomes are allocated reproductive opportunities
in a way that chromosomes which represent a better solu-
tion to the target population are given a higher chance to
reproduce than those with a lower fitness level. The fitness
of a solution is typically defined with respect to the cur-
rent population. Following selection the crossover opera-
tor exchanges subparts of two chromosomes, typically with
a probability between 85% and 90%. Mutation may then
be applied normally with a probability of 1 in a 1000. In-
version and other reordering operators may also be applied
depending on the design of the the GA and the problem to
be solved. The fitness landscape is constructed by assign-
ing the fitness values of the genotypes to the correspond-
ing points in the genotype space, each genotype is given
a“height” according to its fitness. The global structure of a
landscape can range from very smooth to very rugged, this
depends on the underlying problem. However, to develop a
theory about population flow a problem independent fitness
landscape would be convenient. The NK model is designed
to explore the way the epistasis controls the ”ruggedness”
of an adaptive landscape, it was introduced by Kauffman
to have a problem-independent model for constructing fit-
ness landscapes that can gradually be turned from smooth
to rugged. The generalised NK model can be applied to the
representation problem in evolutionary computing, that is
how to represent objects in the search space so that the ge-
netic operators can have a good chance of producing fitter
variants when acting in the representation.

8.2 Future Work

From the above it is clear that much research has been
conducted on GA’s and their operators. However, there has
been an increase in the numbers of papers being published
on Genetic Algorithms in recent years, indicating that much
work still remains outstanding. The representation problem
is one of the largest problems encountered when designing
a GA. Related to this is the choice of genetic operators for
introducing variation into a population. Although operators
have been experimented with in optimisation problems, no
new general purpose operators have been widely adopted
since GA’s were created. The opposite is true, the inver-
sion operator which was included in the original proposal
for theoretical reasons has largely been abandoned. This
operator I feel, may require more research, possibly using
Kauffman’s NK model to analyse the performance of the in-
version operator and to see if a more efficient search of the
search space can be implemented.

References

[1] D. Beasley, D. R. Bull, and R. R. Martin. Genetic algo-
rithms, part 2 research topics. Technical report, University

of Purdue, 1993.
[2] D. Beasley, D. R. Bull, and R. R. Martin. An overview of

genetic algorithms part 1 fundamentals. Technical report,
University of Purdue, 1993.

[3] L. Booker. Improving search in genetic algorithms. In D.L.,
editor,Genetic Algorithms and Simulated Annealing, pages
100–107. Morgan Kaufmann, 1987.

[4] S. Chen and S. F. Smith. Putting the ”genetics” back into ge-
netic algorithms (reconsider the role of crossover in hybrid
operators). Technical report, The Robotic Institute, Carnegie
Mellon University, 1999.

[5] W. Darrell. A genetic algorithm tutorial. Technical Report
CS-93-103, Colorado State University, 1993.

[6] D. E. Goldberg.Genetic Algorithms in Search Optimization,
and Machine Learning. Addison-Wesley, 1989.

[7] D. E. Goldberg, B. Korb, and K. Deb. Messy genetic al-
gorithms: Motivation, analysis, and first results.Complex
Systems, 3:493–530, 1990.

[8] H. J. H. Adaptation in Natural and Artificial Systems. The
University of Michigan, 1975.

[9] W. Hordijk. Population flow on fitness landscapes. PhD
thesis, University of Rotterdam 1994, 1994.

[10] W. Hordijk. A measure of landscapes. Technical report,
Santa Fe Institute, 1995.

[11] K. Joh.Genetic Programming. The MIT Press, 1992.
[12] C. N. L. A representation for the adaptive generation of

simple sequential programs. In J. Grefenstette, editor,Pro-
ceedings of the First International Conference on Genetic
Algorithms, pages 183–187. Lawrence Erlbaum Associates,
1985.

[13] A. Lee. Nk fitness landscapes. Technical report, Hawai’i In-
stitute of Geophysics and Planetology, University of Hawai’i
at Manoa, Honolulu, HI USA., 1996.

[14] S. W. M. and K. DeJong. An analysis of multi-point
crossover. InFoundations of Genetic Algorithms, pages
301–315. Morgan Kaufmann, 1991.

[15] G. Mayley. The evolutionary cost of learning. Technical
report, School of Cognitive and Computer Sciences, Uni-
versity of Sussex, 1996.

[16] M. Mitchell. An Introduction to Genetic Algorithms. MIT
Press, Cambridge, USA, 1996.

[17] F. S. Mitchelle Melanie. Genetic algorithms and artificial
life 93-11-072. Technical report, Santa Fe Institute, 1993.

[18] G. Syswerda. Uniform crossover in genetic algorithms.In
Proceedings of the Third International Conference on article
Genetic Algorithms, pages 2–9. Morgan Kauffmann, 1989.

[19] D. Tate, M. David, and A. E. Smith. Expected allele cover-
age and the role of mutation in genetic algorithms. Technical
report, Dept. of Industrial Engineering, University of Pitts-
burg, 1993.

10

